PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modeling of negative bias temperature instability

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Negative bias temperature instability is regarded as one of the most important reliability concerns of highly scaled PMOS transistors. As a consequence of the continuous downscaling of semiconductor devices this issue has become even more important over the last couple of years due to the high electric fields in the oxide and the routine incorporation of nitrogen. During negative bias temperature stress a shift in important parameters of PMOS transistors, such as the threshold voltage, subthreshold slope, and mobility is observed. Modeling efforts date back to the reaction-diffusion model proposed by Jeppson and Svensson thirty years ago which has been continuously refined since then. Although the reaction-diffusion model is able to explain many experimentally observed characteristics, some microscopic details are still not well understood. Recently, various alternative explanations have been put forward, some of them extending, some of them contradicting the standard reaction-diffusion model. We review these explanations with a special focus on modeling issues.
Rocznik
Tom
Strony
92--102
Opis fizyczny
Bibliogr. 75 poz., rys.
Twórcy
autor
  • Christian Doppler Laboratory for TCAD, in Microelectronics Institute for Microelectronics, TU Wien, Gushaustrase 27-29, A-1040 Wien, Austria, Grasser@iue.tuwien.ac.at
Bibliografia
  • [1] A. Goetzberger and H. E. Nigh, “Surface charge after annealing of Al-SiO2-Si structures under bias”, Proc. IEEE, vol. 54, no. 10, pp. 1454–1454, 1966.
  • [2] E. Deal, M. Sklar, A. S. Grove, and E. H. Snow, “Characteristics of the surface-state charge (Qss) of thermally oxidized silicon”, J. Electrochem. Soc., vol. 114, no. 3, p. 266, 1967.
  • [3] D. K. Schroder and J. A. Babcock, “Negative bias temperature in- stability: road to cross in deep submicron silicon semiconductor manufacturing”, J. Appl. Phys., vol. 94, no. 1, pp. 1–18, 2003.
  • [4] M. A. Alam and S. Mahapatra, “A comprehensive model of PMOS NBTI degradation”, Microelectron. Reliab., vol. 45, no. 1, pp. 71–81, 2005.
  • [5] S. Mahapatra, M. A. Alam, P. B. Kumar, T. R. Dalei, D. Varghese, and D. Saha, “Negative bias temperature instability in CMOS devices”, Microelectron. Eng., vol. 80, no. suppl., pp. 114–121, 2005.
  • [6] V. Huard, M. Denais, and C. Parthasarathy, “NBTI degradation: from physical mechanisms to modelling”, Microelectron. Reliab., vol. 46, no. 1, pp. 1–23, 2006.
  • [7] J. H. Stathis and S. Zafar, “The negative bias temperature instability in MOS devices: a review”, Microelectron. Reliab., vol. 46, no. 2–4, pp. 270–286, 2006.
  • [8] K. O. Jeppson and C. M. Svensson, “Negative bias stress of MOS devices at high electric fields and degradation of MNOS devices”, J. Appl. Phys., vol. 48, no. 5, pp. 2004–2014, 1977.
  • [9] S. Ogawa and N. Shiono, “Generalized diffusion-reaction model for the low-field charge build up instability at the Si/SiO2 interface”, Phys. Rev. B, vol. 51, no. 7, pp. 4218–4230, 1995.
  • [10] M. Ershov, R. Lindley, S. Saxena, A. Shibkov, S. Minehane, J. Babcock, S. Winters, H. Karbasi, T. Yamashita, P. Clifton, and M. Redford, “Transient effects and characterization methodology of negative bias temperature instability in PMOS transistors”, in Proc. Int. Rel. Phys. Symp., Dallas, USA, 2003, pp. 606–607.
  • [11] S. Rangan, N. Mielke, and E. C. C. Yeh, “Universal recovery behavior of negative bias temperature instability”, in Proc. Int. Electron Dev. Meet., Washington, USA, 2003, pp. 341–344.
  • [12] D. Varghese, D. Saha, S. Mahapatra, K. Ahmed, F. Nouri, and M. Alam, “On the dispersive versus arrhenius temperature activation of NBTI time evolution in plasma nitrided gate oxides: measurements, theory, and implications”, in Proc. Int. Electron Dev. Meet., Washington, USA, 2005, pp. 1–4.
  • [13] A. Haggag, W. McMahon, K. Hess, K. Cheng, J. Lee, and J. Lyding, “High-performance chip reliability from short-time-tests”, in Proc. Int. Rel. Phys. Symp., Orlando, USA, 2001, pp. 271–279.
  • [14] E. H. Poindexter, G. J. Gerardi, M.-E. Rueckel, P. J. Caplan, N. M. Johnson, and D. K. Biegelsen, “Electronic traps and Pb cen- ters at the Si/SiO2 interface: band-gap energy distribution”, J. Appl. Phys., vol. 56, no. 10, pp. 2844–2849, 1984.
  • [15] P. M. Lenahan and J. F. Conley Jr., “What can electron paramagnetic resonance tell us about the Si/SiO2 system?”, J. Vac. Sci. Technol. B, vol. 16, no. 4, pp. 2134–2153, 1998.
  • [16] J. P. Campbell, P. M. Lenahan, A. T. Krishnan, and S. Krishnan, “Direct observation of the structure of defect centers involved in the negative bias temperature instability”, Appl. Phys. Lett., vol. 87, no. 20, pp. 1–3, 2005.
  • [17] M. Denais, A. Bravaix, V. Huard, C. Parthasarathy, G. Ribes, F. Perrier, Y. Rey-Tauriac, and N. Revil, “On-the-fly characterization of NBTI in ultra-thin gate oxide PMOSFET’s”, in Proc. Int. Electron Dev. Meet., San Francisco, USA, 2004, pp. 109–112.
  • [18] M. A. Alam, “A critical examination of the mechanics of dynamic NBTI for PMOSFETs”, in Proc. Int. Electron Dev. Meet., Washing- ton, USA, 2003, pp. 345–348.
  • [19] A. T. Krishnan, C. Chancellor, S. Chakravarthi, P. E. Nicollian, V. Reddy, A. Varghese, R. B. Khamankar, and S. Krishnan, “Material dependence of hydrogen diffusion: implications for NBTI degradation”, in Proc. Int. Electron Dev. Meet., Washington, USA, 2005, pp. 688–691.
  • [20] A. T. Krishnan, V. Reddy, S. Chakravarthi, J. Rodriguez, S. John, and S. Krishnan, “NBTI impact on transistor and circuit: models, mechanisms and scaling effects”, in Proc. Int. Electron Dev. Meet., Washington, USA, 2003, pp. 14.5.1–14.5.4.
  • [21] M. Houssa, M. Aoulaiche, S. De Gendt, G. Groeseneken, M. M. Heyns, and A. Stesmans, “Reaction-dispersive proton transport model for negative bias temperature instabilities”, Appl. Phys. Lett., vol. 86, no. 9, pp. 1–3, 2005.
  • [22] B. Kaczer, V. Arkhipov, R. Degraeve, N. Collaert, G. Groeseneken, and M. Goodwin, “Temperature dependence of the negative bias temperature instability in the framework of dispersive transport”, Appl. Phys. Lett., vol. 86, no. 14, pp. 1–3, 2005.
  • [23] S. Zafar, “Statistical mechanics based model for negative bias temperature instability induced degradation”, J. Appl. Phys., vol. 97, no. 10, pp. 1–9, 2005.
  • [24] A. Stesmans, “Passivation of Pb0 and Pb1 interface defects in thermal (100) Si/SiO2 with molecular hydrogen”, Appl. Phys. Lett., vol. 68, no. 15, pp. 2076–2078, 1996.
  • [25] M. Houssa, J. L. Autran, A. Stesmans, and M. M. Heyns, “Model for interface defect and positive charge generation in ultrathin SiO2/ZrO2 gate dielectric stacks”, Appl. Phys. Lett., vol. 81, no. 4, pp. 709–711, 2002.
  • [26] L. Tsetseris, X. J. Zhou, D. M. Fleetwood, R. D. Schrimpf, and S. T. Pantelides, “Physical mechanisms of negative-bias temperature instability”, Appl. Phys. Lett., vol. 86, no. 14, pp. 1–3, 2005.
  • [27] K. Kushida-Abdelghafar, K. Watanabe, J. Ushio, and E. Murakami, “Effect of nitrogen at SiO2/Si interface on reliability issues”, Appl. Phys. Lett., vol. 81, no. 23, pp. 4362–4364, 2002.
  • [28] M. Houssa, “Modelling negative bias temperature instabilities in advanced p-MOSFETs”, Microelectron. Reliab., vol. 45, no. 1, pp. 3–12, 2005.
  • [29] N. Stojadinović, D. Danković, S. Djorić-Veljković, V. Davidović, I. Manić, and S. Golubović, “Negative bias temperature instability mechanisms in p-channel power VDMOSFETs”, Microelectron. Reliab., vol. 45, no. 9-11, pp. 1343–1348, 2005.
  • [30] B. Kaczer, V. Arkhipov, R. Degraeve, N. Collaert, G. Groeseneken, and M. Goodwin, “Disorder-controlled-kinetics model for nega- tive bias temperature instability and its experimental verification”, in Proc. Int. Rel. Phys. Symp., San Jose, USA, 2005, pp. 381–387.
  • [31] T. Yang, C. Shen, M. F. Li, C. H. Ang, C. X. Zhu, Y.-C. Yeo, G. Samudra, and D.-L. Kwong, “Interface trap passivation effect in NBTI measurement for p-MOSFET with SiON gate dielectric”, IEEE Electron Dev. Lett., vol. 26, no. 10, pp. 758–760, 2005.
  • [32] D. S. Ang, “Observation of suppressed interface state relaxation under positive gate biasing of the ultrathin oxynitride gate p-MOSFET subjected to negative-bias temperature stressing”, IEEE Electron Dev. Lett., vol. 27, no. 5, pp. 412–415, 2006.
  • [33] H. Reisinger, O. Blank, W. Heinrigs, A. Muhlhoff, W. Gustin, and C. Schlunder, “Analysis of NBTI degradation- and recovery-behavior based on ultra fast Vt -measurements”, in Proc. Int. Rel. Phys. Symp., San Jose, USA, 2006, pp. 448–453.
  • [34] C. G. Van de Walle and B. R. Tuttle, “Microscopic theory of hydrogen in silicon devices”, IEEE Trans. Electron Dev., vol. 47, no. 10, pp. 1779–1786, 2000.
  • [35] N. H. Nickel, A. Yin, and S. J. Fonash, “Influence of hydrogen and oxygen plasma treatments on grain-boundary defects in polycrystalline silicon”, Appl. Phys. Lett., vol. 65, no. 24, pp. 3099–3101, 1994.
  • [36] S. N. Rashkeev, D. M. Fleetwood, D. Schrimpf, and S. T. Pantelides, “Dual behavior of H+ at Si-SiO2 interfaces: mobility versus trapping”, Appl. Phys. Lett., vol. 81, no. 10, pp. 1839–1841, 2002.
  • [37] C. G. Van de Walle, P. J. H. Denteneer, Y. Bar-Yam, and S. T. Pan- telides, “Theory of hydrogen diffusion and reactions in crystalline silicon”, Phys. Rev. B, vol. 39, no. 15, pp. 10791–10808, 1989.
  • [38] M. Denais, A. Bravaix, V. Huard, C. Parthasarathy, M. Bidaud, G. Ribes, D. Barge, L. Vishnubhotla, B. Tavel, Y. Rey-Tauriac, F. Perrier, N. Revil, F. Arnaud, and P. Stolk, “New hole trapping characterization during NBTI in 65 nm node technology with distinct nitridation processing”, in Proc. Int. Integr. Reliab. Worksh., Lake Tahoe, USA, 2004, pp. 121–124.
  • [39] D. S. Ang, S. Wang, and C. H. Ling, “Evidence of two distinct degradation mechanisms from temperature dependence of negative bias stressing of the ultrathin gate p-MOSFET”, IEEE Electron Dev. Lett., vol. 26, no. 12, pp. 906–908, 2005.
  • [40] E. W. Montroll and H. Scher, “Random walks on lattices. IV. Continuous-time walks and influence of absorbing boundaries”, J. Stat. Phys., vol. 9, no. 2, pp. 101–135, 1973.
  • [41] H. Scher and E. W. Montroll, “Anomalous transit-time dispersion in amorphous solids”, Phys. Rev. B, vol. 12, no. 6, pp. 2455–2477, 1975.
  • [42] J. Noolandi, “Multiple-trapping model of anomalous transit-time dispersion in a-Se”, Phys. Rev. B, vol. 16, no. 10, pp. 4466–4473, 1977.
  • [43] V. I. Arkhipov and A. I. Rudenko, “Drift and diffusion in materials with traps”, Phil. Mag. B, vol. 45, no. 2, pp. 189–207, 1982.
  • [44] D. B. Brown and N. S. Saks, “Time dependence of radiation-induced trap formation in metal-oxide-semiconductor devices as a function of oxide thickness and applied field”, J. Appl. Phys., vol. 70, no. 7, pp. 3734–3747, 1991.
  • [45] J. Orenstein, M. A. Kastner, and V. Vaninov, “Transient photocon- ductivity and photo-induced optical absorption in amorphous semi- conductors”, Phil. Mag. B, vol. 46, no. 1, pp. 23–62, 1982.
  • [46] F. B. McLean and G. A. Ausman, “Simple approximate solution to continuous-time random-walk transport”, Phys. Rev. B, vol. 15, no. 2, pp. 1052–1061, 1977.
  • [47] V. I. Arkhipov, “Trap-controlled and hopping modes of transport and recombination: similarities and differences”, in Proc. Int. Symp. Elect. Insul. Mater., Tokyo, Japan, 1995, pp. 271–274.
  • [48] J. Noolandi, “Equivalence of multiple-trapping model and time- dependent random walk”, Phys. Rev. B, vol. 16, no. 10, pp. 4474–4479, 1977.
  • [49] F.W. Schmidlin, “Theory of trap-controlled photoconduction”, Phys. Rev. B, vol. 16, no. 6, pp. 2362–2385, 1977.
  • [50] S. Lathi and A. Das, “Seminumerical simulation of dispersive transport in the oxide of metal-oxide semiconductor devices”, J. Appl. Phys., vol. 77, no. 8, pp. 3864–3867, 1995.
  • [51] N. Talwalkar, A. Das, and J. Vasi, “Dispersive transport of carriers under nonuniform electric field”„ J. Appl. Phys., vol. 78, no. 7, pp. 4487–4489, 1995.
  • [52] W. B. Jackson and C. C. Tsai, “Hydrogen transport in amorphous silicon”, Phys. Rev. B, vol. 45, no. 12, pp. 6564–6580, 1992.
  • [53] K. L. Brower, “Passivation of paramagnetic Si/SiO2 interface states with molecular hydrogen”, Appl. Phys. Lett., vol. 53, no. 6, pp. 508–510, 1988.
  • [54] E. Cartier, J. H. Stathis, and D. A. Buchanan, “Passivation and depassivation of silicon dangling bonds at the Si(111)/SiO2 interface by atomic hydrogen”, Appl. Phys. Lett., vol. 63, no. 11, pp. 1510–1512, 1993.
  • [55] E. Cartier and J. H. Stathis, “Hot-electron induced passivation of silicon dangling bonds at the Si(111)/SiO2 interface”, Appl. Phys. Lett., vol. 69, no. 1, pp. 103–105, 1996.
  • [56] A. T. Krishnan, S. Chakravarthi, P. Nicollian, V. Reddy, and S. Krishnan, “Negative bias temperature instability mechanism: the role of molecular hydrogen”, Appl. Phys. Lett., vol. 88, no. 15, pp. 1–3, 2006.
  • [57] A. Stesmans, “Dissociation kinetics of hydrogen-passivated Pb defects at the (111)Si/SiO2 interface”, Phys. Rev. B, vol. 61, no. 12, pp. 8393–8403, 2000.
  • [58] M. Denais, V. Huard, C. Parthasarathy, G. Ribes, F. Perrier, D. Roy, and A. Bravaix, “Perspectives on NBTI in advanced technologies: modelling & characterization”, in Proc. ESSDERC Conf., Grenoble, France, 2005, pp. 399–402.
  • [59] D. L. Griscom, “Diffusion of radiolytic molecular hydrogen as a mechanism for the post-irradiation buildup of interface states in SiO2-on-Si structures”, J. Appl. Phys., vol. 58, no. 7, pp. 2524–2533, 1985.
  • [60] L. Tsetseris and S. T. Pantelides, “Migration, incorporation, and passivation reactions of molecular hydrogen at the Si-SiO2 interface”, Phys. Rev. B, vol. 70, no. 24, pp. 1–6, 2004.
  • [61] S. Chakravarthi, A. T. Krishnan, V. Reddy, C. F. Machala, and S. Krishnan, “A comprehensive framework for predictive modeling of negative bias temperature instability”, in Proc. Int. Rel. Phys.Symp., Phoenix, USA, 2004, pp. 273–282.
  • [62] S. Ogawa, M. Shimaya, and N. Shiono, “Interface-trap generation at ultrathin SiO2 (4 nm–6 nm)-Si interfaces during negative-bias temperature aging”, J. Appl. Phys., vol. 77, no. 3, pp. 1137–1148, 1995.
  • [63] J. B. Yang, T. P. Chen, S. S. Tan, and L. Chan, “Analytical reaction-diffusion model and the modeling of nitrogen-enhanced negative bias temperature instability”, Appl. Phys. Lett., vol. 88, no. 17, pp. 1–3, 2006.
  • [64] C. T. Sah, T. H. Ning, and L. L. Tschopp, “The scattering of electrons by surface oxide charges and by lattice vibrations at the silicon-silicon dioxide interface”, Surf. Sci., vol. 32, no. 3, pp. 561–575, 1972.
  • [65] M. Kondo and H. Tanimoto, “Accurate Coulomb mobility model for MOS inversion layer and its application to NO-oxynitride devices”, IEEE Trans. Electron Dev., vol. 48, no. 2, pp. 265–270, 2001.
  • [66] M. A. Alam, “NBTI: a simple view of a complex phenomena”, in Proc. Int. Rel. Phys. Symp., San Jose, USA, 2006.
  • [67] M. Houssa, M. Aoulaiche, J. L. Autran, C. Parthasarathy, N. Revil, and E. Vincent, “Modeling negative bias temperature instabilities in hole channel metal-oxide-semiconductor field effect transistors with ultrathin gate oxide layers”, J. Appl. Phys., vol. 95, no. 5, pp. 2786–2791, 2004.
  • [68] V. Huard, M. Denais, F. Perrier, N. Revil, C. Parthasarathy, A. Bravaix, and E. Vincent, “A thorough investigation of MOSFETs NBTI degradation”, Microelectron. Reliab., vol. 45, no. 1, pp. 83–98, 2005.
  • [69] H. Aono, E. Murakami, K. Okuyama, A. Nishida, M. Minami, Y. Ooji, and K. Kubota, “Modeling of NBTI saturation effect and its
  • impact on electric field dependence of the lifetime”, Microelectron. Reliab., vol. 45, no. 7-8, pp. 1109–1114, 2005.
  • [70] F. Lau, L. Mader, C. Mazure, Ch. Werner, and M. Orlowski, “Model for phosphorus segregation at the silicon-silicon dioxide interface”, Appl. Phys. A, vol. 49, no. 6, pp. 671–675, 1989.
  • [71] H. Kufluoglu and M. A. Alam, “A geometrical unification of the theories of NBTI and HCI time-exponents and its implications for ultra-scaled planar and surround-gate MOSFETs”, in Proc. Int. Electron Dev. Meet., San Francisco, USA, 2004, pp. 113–116.
  • [72] C. Schl ¨under, R. Brederlow, B. Ankele, W. Gustin, K. Goser, and R. Thewes, “Effects of inhomogeneous negative bias temperature stress on p-channel MOSFETs of analog and RF circuits”, Microelectron. Reliab., vol. 45, no. 1, pp. 39–46, 2005.
  • [73] H. Kufluoglu and M. A. Alam, “Theory of interface-trap-induced NBTI degradation for reduced cross section MOSFETs”, IEEE Trans. Electron Dev., vol. 53, no. 5, pp. 1120–1130, 2006.
  • [74] R. E. Stahlbush and E. Cartier, “Interface defect formation in MOS- FETs by atomic hydrogen exposure”, IEEE Trans. Nucl. Sci., vol. 41, no. 6, pp. 1844–1853, 1994.
  • [75] W. D. Eades and R. M. Swanson, “Calculation of surface generation and recombination velocities at the Si-SiO2 interface”, J. Appl. Phys., vol. 58, no. 11, pp. 4267–4276, 1985.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT8-0008-0016
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.