PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Energy concepts involved in MOS characterization

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Starting from a quantum statistical reasoning, it is demonstrated that entropy properties of silicon/silicon dioxide interface electron traps may have a strong influence on measured distributions of interface states, depending on measurement method used. For methods, where the Fermi-level is used as a probe to define an energy position, the scale is based on free energy. On the other hand, methods based on thermal activation of electrons give the distribution on an enthalpy scale. It is shown that measured interface state distributions are influenced by the distribution of entropy, and that common features of measured energy distributions may be influenced by entropy variations. These results are used to interpret experimental data on the energy distribution of electron capture cross sections with an exponential increase followed by a more or less constant value as the energy distance of the traps from the conduction band edge increases. Such a relation is shown to be consistent with a situation where the emission and capture processes of electrons obey the Meyer-Neldel rule.
Rocznik
Tom
Strony
86--91
Opis fizyczny
Bibliogr. 23 poz., rys.
Twórcy
autor
autor
Bibliografia
  • [1] E. H. Nicollian and J. R. Brews, MOS (Metal-Oxide-Semiconductor) Physics and Technology. New York: Wiley-Interscience, 1982.
  • [2] G. Groeseneken, H. E. Maes, N. Beltran, and R. F. DeKeersmaecker, “A reliable approach to charge-pumping measurements in MOS transistors”, IEEE Trans. Electron Dev., vol. ED-31, pp. 42–53, 1984.
  • [3] P. Blood and J. W. Onton, The Electrical Characterization of Semiconductors: Majority Carriers and Electron States. London: Academic Press, 1992.
  • [4] O. Engström and A. Alm, “Energy concepts of insulator-semiconductor interface traps”, J. Appl. Phys., vol. 54, pp. 5240–5244, 1983.
  • [5] O. Engström and M. S. Shivaraman, “Statistics for the interpretation of deep level transient spectroscopy on insulator-semiconductor interfaces”, J. Appl. Phys., vol. 58, pp. 3929–3930, 1985.
  • [6] O. Engström, “Influence of entropy properties on measured trap energy distributions at insulator-semiconductor interface”, Appl. Phys. Lett., vol. 55, pp. 47–49, 1989.
  • [7] O. Engström and H. G. Grimmeiss, “Vibronic states of siliconsilicon dioxide interface traps”, Semicond. Sci. Technol., no. 4, pp. 1106–1115, 1989.
  • [8] E. H. Poindexter, “MOS interface states: overview and physicochemical perspective”, Semicond. Sci. Technol., no. 4, pp. 961–969, 1989.
  • [9] W. Fahrner and A. Goetzberger, “Energy dependence of electrical properties of interface states in Si SiO2 interfaces”, Appl. Phys. Lett., vol. 17, pp. 16–18, 1970.
  • [10] H. Deuling, E. Klausmann, and A. Goetzberger, “Interface states in Si-SiO2 interfaces”, Solid State Electron., vol. 15, pp. 559–571, 1972.
  • [11] M. Morita, K. Tsubouchi, and N. Mikoshiba, “Measurement of interface-state parameters near the band edge at the Si/SiO2 interface by the conductance method”, Appl. Phys. Lett., vol. 33, pp. 745–747, 1978.
  • [12] W. D. Eades and R. M. Swanson, “Determination of the capture cross section and degeneracy factor of Si-SiO2 interface states”, Appl. Phys. Lett., vol. 44, pp. 988–990, 1984.
  • [13] N. Hanei, L. Vishnubhotla, and T. P. Ma, “Possible observation of Pb0 and Pb1 centers at irradiated (100)Si/SiO2 interface from electrical measurements”, Appl. Phys. Lett., vol. 59, pp. 3416–3418, 1991.
  • [14] M. Uren, “Interface state capture cross section measurements on vacuum annealed and radiation damaged Si:SiO2 surfaces”, J. Electrochem. Soc., vol. 145, pp. 683–689, 1988.
  • [15] J. Albohn, W. Füssel, N. D. Sinh, K. Kliefoth, and W. Fuhs, “Capture cross sections of defect states at the Si/SiO2 interface”, J. Appl. Phys., vol. 88, pp. 842–849, 2000.
  • [16] A. Yelon and B. Movaghar, “Microscopic explanation of the compensation Meyer-Neldel rule”, Phys. Rev. Lett., vol. 65, pp. 618–620, 1990.
  • [17] Handbook of Semiconductors, P. T. Landsberg, Ed. New York: Elsevier, 1992, vol. 1, chapter 6.
  • [18] J. A. Van Vechten and C. D. Thurmond, “Entropy of ionization and temperature variation of ionization levels of defects in semiconductors”, Phys. Rev. B, vol. 14, pp. 3539–3550, 1976.
  • [19] C. D. Thurmond, “The standard thermodynamic functions for the formation of electrons and holes in Ge, Si, GaAs and GaP”, J. Electrochem. Soc., vol. 122, pp. 1133–1141, 1975.
  • [20] S. W. Johnston, R. S. Crandall, and A. Yelon, “Evidence of the Meyer-Neldel rule in InGaAsN alloys and the problem of determining trap capture cross sections”, Appl. Phys. Lett., vol. 83, pp. 908–909, 2003.
  • [21] O. Engström and M. Kaniewska, “Discovery of classes among deep level centers in gallium arsenide” (submitted to J. Mat. Sci. B).
  • [22] T. Sakurai and T. Sugano, “Theory of continuously distributed trap states at Si-SiO2 interfaces”, J. Appl. Phys., vol. 52, pp. 2889–2896, 1981.
  • [23] A. H. Edwards, “Theory of the Pb center at the h111i Si/SiO2 interface”, Phys. Rev. B, vol. 36, pp. 9638–9648, 1987.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT8-0008-0015
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.