PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Review and perspective of high-k dielectrics on silicon

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper reviews recent work in the area of high-k dielectrics for application as the gate oxide in advanced MOSFETs. Following a review of relevant dielectric physics, we discuss challenges and issues relating to characterization of the dielectrics, which are compounded by electron trapping phenomena in the microsecond regime. Nearly all practical methods of preparation result in a thin interfacial layer generally of the form SiOx or a mixed oxide between Si and the high-k so that the extraction of the dielectric constant is complicated and values must be qualified by error analysis. The discussion is initially focussed on HfO2 but recognizing the propensity for crystallization of that material at modest temperatures, we discuss and review also, hafnia silicates and aluminates which have the potential for integration into a full CMOS process. The paper is concluded with a perspective on material contenders for the "end of road map" at the 22 nm node.
Rocznik
Tom
Strony
33--43
Opis fizyczny
Bibliogr. 57 poz., rys.
Twórcy
autor
autor
autor
autor
  • Department of Electrical Engineering and Electronics, Brownlow Hill, University of Liverpool, Liverpool L69 3GJ, UK, s.hall@liverpool.ac.uk
Bibliografia
  • [1] International Technology Roadmap for Semiconductors (ITRS), www.itrs.net.
  • [2] D. A. Muller, T. Sorsch, S. Mocclo, F. H. Baumann, K. Evans- Lutterodt, and G. Timp, “The electronic structure at the atomic scale of ultrathin gate oxides”, Nature, vol. 399, pp. 758–761, 1999.
  • [3] J. Robertson, “Interfaces and defects of high-k oxides on silicon”, Solid-State Electron., vol. 49, pp. 283–293, 2005.
  • [4] G. D. Wilk, R. M. Wallace, and J. M. Anthony, “High-k gate dielectrics: current status and materials properties considerations”, J. Appl. Phys., vol. 89, no. 10, pp. 5243–5275, 2001.
  • [5] G.-M. Rignanese, “Dielectric properties of crystalline and amorphous transition metal oxides and silicates as potential high-k candidates: the contribution of density-functional theory”, J. Phys. Cond. Matt., vol. 17, no. 7, pp. R357–R379, 2005.
  • [6] O. Engstrom, B. Raeissi, S. Hall, O. Buiu, M. C. Lemme, H. D. B. Gottlob, P. K. Hurley, and H. Cherkaoui, “Navigation aids in the search for future high k dielectrics: physical and electrical trends”, Solid-State Electron., vol. 51, pp. 622–626, 2007.
  • [7] D. K. Schroder, Semiconductor Material and Device Characterization. New York: Wiley, 1998.
  • [8] K. J. Yang and C. Hu, “MOS capacitance measurements for highleakage thin dielectrics”, IEEE Trans. Electron Dev., vol. 46, no. 7, pp. 1500–1501, 1999.
  • [9] K. S. K. Kwa, S. Chattopadhyay, N. D. Jankovic, S. H. Olsen, L. S. Driscoll, and A. G. O’Neill, “A model for capacitance reconstruction from measured lossy MOS capacitance-voltage characteristics”, Semicond. Sci. Technol., vol. 18, pp. 82–87, 2003.
  • [10] J. Maserjian, G. Petersson, and C. Svensson, “Saturation capacitance of thin oxide MOS structures and the effective surface density of states of silicon”, Solid-State Electron., vol. 17, no. 4, pp. 335–339, 1974.
  • [11] QMCV simulator developed by UC Berkeley Device Group, http://www-device.eecs.berkeley.edu/qmcv/index.shtml
  • [12] O. Buiu, S. Hall, O. Engstrom, B. Raeissi, M. Lemme, P. K. Hurley, and K. Cherkaoui, “Extracting the relative dielectric constant for high-k layers from CV measurements – errors and error propagation”, Microelectron. Reliab., vol. 47, pp. 678–681, 2007.
  • [13] M. L. Green, M.-Y. Ho, B. Busch, G. D. Wilk, T. Sorsch, T. Conard, B. Brijs, W. Vandervorst, P. I. Räisänen, D. Muller, M. Bude, and J. Grazul, “Nucleation and growth of atomic layer deposited HfO2 gate dielectric layers on chemical oxide (Si-O-H) and thermal oxide (SiO2 or Si-O-N) underlayers”, J. Appl. Phys., vol. 92, no. 12, pp. 7168–7174, 2005.
  • [14] O. Buiu, Y. Lu, I. Z. Mitrovic, S. Hall, P. Chalker, and R. J. Potter, “Spectro-ellipsometric assessment of HfO2 thin films”, Thin Solid Films, vol. 515, no. 2, pp. 623–626, 2006.
  • [15] K. Xiong and J. Robertson, “Point defects in HfO2 high-k gate oxide”, Microelectron. Eng., vol. 80, pp. 408–411, 2005.
  • [16] A. Kerber, E. Cartier, L. Pantisano, R. Degraeve, G. Groeseneken, H. E. Maes, and U. Schwalke, “Charge trapping in SiO2/HfO2 gate dielectrics: comparison between charge-pumping and pulsed ID −VG”, Microelectron. Eng., vol. 72, no. 1-4, pp. 267–272, 2004.
  • [17] J. Mitard, C. Leroux, G. Ghibaudo, G. Reimbold, X. Garros, B. Guillaumot, and F. Boulanger, “Investigation on trapping and detrapping mechanisms in HfO2 films”, Microelectron. Eng., vol. 80, pp. 362–365, 2005.
  • [18] C. Zhao, M. B. Zahid, J. F. Zhang, G. Groenseneken, R. Degraeve, and S. De Gendt, “Properties and dynamic behavior of electron traps in HfO2/SiO2 stacks”, Microelectron. Eng., vol. 80, pp. 366–369, 2005.
  • [19] C. Z. Zhao, J. F. Zhang, M. B. Zahid, G. Groeseneken, R. Degraeve, and S. De Gendt, “Impact of gate materials on positive charge formation in HfO2/SiO2 stacks”, Appl. Phys. Lett., vol. 89, pp. 023507-1-3, 2006.
  • [20] S. Hall, O. Buiu, and Y. Lu, “Direct observation of anomalous positive charge and electron trapping dynamics in high-k films using pulsed MOS capacitor measurements”, IEEE Trans. Electron Dev., vol. 54, no. 2, pp. 272–278, 2007.
  • [21] J.-H. Hong, T.-H. Moon, and J.-M. Myoung, “Microstructure and characteristics of the HfO2 dielectric layers grown by metalorganic molecular beam epitaxy”, Microelectron. Eng., vol. 75, no. 3, pp. 263–268, 2004.
  • [22] E. P. Gusev, C. Cabral, M. Copel, C. D’Emic, and M. Gribelyuk, “Ultrathin HfO2 films grown on silicon by atomic layer deposition for advance gate dielectric applications”, Microelectron. Eng., vol. 69, no. 2-4, pp. 145–151, 2003.
  • [23] M. Cho, H. B. Park, J. Park, and C. S. Hwang, “Thermal annealing effects on the structural and electrical properties of HfO2/Al2O3 gate dielectric stacks grown by atomic layer deposition on Si substrate”, J. Appl. Phys., vol. 94, no. 4, pp. 2563–2571, 2003.
  • [24] R. J. Potter, P. A. Marshall, P. R. Chalker, S. Taylor, A. C. Jones, T. C. Q. Noakes, and P. Bailey, “Characterization of hafnium aluminate gate dielectrics deposited by liquid injection metalorganic chemical vapor deposition”, Appl. Phys. Lett., vol. 84, no. 20, pp. 4119–4121, 2004.
  • [25] C. Driemeier, K. P. Bastos, L. Miotti, I. J. R. Baumvola, N. V. Nguyen, S. Sayan, and C. Krug, “Compositional stability of hafnium aluminates thin films deposited on Si by atomic layer deposition”, Appl. Phys. Lett., vol. 86, pp. 221911-1-3, 2005.
  • [26] H. Y. Yu, M. F. Li, B. J. Cho, C. C. Yeo, and M. S. Joo, “Energy gap and band alignment for (HfO2)x(Al2O3)1−x on (100) Si”, Appl. Phys. Lett., vol. 81, no. 2, pp. 376–378, 2002.
  • [27] O. Buiu, Y. Lu, S. Hall, I. Z. Mitrovic, R. J. Potter, and P. R. Chalker, “Investigation of optical and electronic properties of hafnium aluminate films deposited by metal-organic chemical vapour deposition”, Thin Solid Films, vol. 515, iss. 7-8, pp. 3772–3778, 2007.
  • [28] W. J. Zhu, T. Tamagawa, M. Gibson, T. Furukawa, and T. P. Ma, “Effect of Al inclusion in HfO2 on the physical and electrical properties of the dielectrics”, IEEE Electron Dev. Lett., vol. 23, no. 11, pp. 649–651, 2002.
  • [29] S. H. Bae, C. H. Lee, R. Clark, and D. L. Kwong, “MOS characteristics of ultrathin CVD HfAlO gate dielectrics”, IEEE Electron Dev. Lett., vol. 24, no. 9, pp. 556–559, 2003.
  • [30] Y. Lu, O. Buiu, S. Hall, I. Z. Mitrovic, W. Davey, R. J. Potter, and P. R. Chalker, “Tuneable electrical properties of hafnium aluminate gate dielectrics deposited by metal organic chemical vapour deposition”, Microelectron. Reliab., vol. 47, pp. 722–725, 2007.
  • [31] M. Kadoshima, A. Ogawa, H. Ota, K. Iwamoto, M. Takahashi, N. Mise, S. Migita, M. Ikeda, H. Satake, T. Nabatame, and A. Toriumi, “Symmetrical threshold voltage in complementary metaloxidesemiconductor field-effect transistors with HfAlOx(N) achieved by adjusting Hf/Al compositional ratio”, J. Appl. Phys., vol. 99, pp. 054506-1-9, 2006.
  • [32] W. L. Liu, P. F. Lee, J. Y. Dai, J. Wang, H. L. W. Chan, C. L. Choy, Z. T. Song, and S. L. Feng, “Self-organized Ge nanocrystals embedded in HfAlO fabricated by pulsed-laser deposition and application to floating gate memory”, Appl. Phys. Lett., vol. 86, pp. 013110-1-3, 2004.
  • [33] A. Uedono, K. Ikeuchi, K. Yamabea, T. Ohdaira, M. Muramatsu, R. Suzuki, A. S. Hamid, T. Chikyow, K. Torii, and K. Yamadaa, “Annealing properties of open volumes in HfSiOx and HfAlOx gate dielectrics studied using monoenergetic position beams”, J. Appl. Phys., vol. 98, pp. 023506-1-5, 2005.
  • [34] Y. E. Hong, Y. S. Kim, K. Do, D. Lee, D. H. Koa, J. H. Ku, and H. Kim, “Thermal stability of Al- and Zr-doped HfO2 thin films grown by direct current magnetron sputtering”, J. Vac. Sci. Technol. A, vol. 23, no. 5, pp. 1413–1418, 2005.
  • [35] M.-H. Cho, D. W. Moon, S. A. Park, Y. K. Kim, K. Jeong, S. K. Kang, D.-H. Ko, S. J. Doh, J. H. Lee, and N. I. Lee, “Interfacial characteristics of N-incorporated HfAlO high-k thin films”, Appl. Phys. Lett., vol. 84, no. 25, pp. 5243–5245, 2004.
  • [36] K. Torii, R. Mitsuhashi, H. Ohji, T. Kawahara, and H. Kitajima, “Nitrogen profile engineering in the interfacial SiON in a HfAlO/SiON gate dielectric by NO re-oxidation”, IEEE Trans. Electron Dev., vol. 53, no. 2, pp. 323–328, 2006.
  • [37] G. D. Wilk and R. M. Wallace, “Electrical properties of hafnium silicate gate dielectrics deposited directly on silicon”, Appl. Phys. Lett., vol. 74, no. 19, pp. 2854–2856, 1999.
  • [38] M. Ritala, K. Kukli, A. Rahtu, P. I. Räisänen, M. Leskelä, T. Sajavaara, and J. Keinonen, “Atomic layer deposition of oxide thin films with metal alkoxides as oxygen sources”, Science, vol. 288, no. 5464, pp. 319–321, 2006.
  • [39] Z. M. Rittersma, E. Naburgh, T. Dao, A. H. C. Hendriks, W. F. A. Besling, E. Tois, E. Vainonen-Ahlgren, M. Tuominen, and S. Haukka, “Physical and electrical properties of Zr-silicate dielectric layers deposited by atomic layer deposition”, Electrochem. Solid-State Lett., vol. 6, no. 7, pp. F21–F23, 2003.
  • [40] M. Lemberger, A. Paskaleva, S. Zürcher, A. J. Bauer, L. Frey, and H. Ryssel, “Electrical properties of hafnium silicate films obtained from a single-source MOCVD precursor”, Microelectron. Reliab., vol. 45, no. 5-6, pp. 819–822, 2005.
  • [41] H.-J. Cho, H. L. Lee, H. B. Park, T. S. Jeon, S. G. Park, B. J. Jin, S. B. Kang, Y. G. Shin, U.-I. Chung, and J. T. Moon, “Effects of post-deposition annealing on the electrical properties of HfSiO films grown by atomic layer deposition”, Jpn. J. Appl. Phys., vol. 44, no. 4B, pp. 2230–2234, 2005.
  • [42] M. Balog, M. Schieber, S. Patai, and M. Michman, “Thin films of metal oxides on silicon by chemical vapor deposition with organometallic compounds”, J. Cryst. Growth, vol. 17, pp. 298–301, 1972.
  • [43] P. J. Harrop and D. S. Campbell, “Selection of thin film capacitor dielectrics”, Thin Solid Films, vol. 2, no. 4, pp. 273–292, 1968.
  • [44] H. Takeuchi and T.-J. King, “Process optimization and integration of HfO2 and Hf-silicates”, in Proc. Mater. Res. Soc. Symp., San Francisco, USA, 2004, vol. 811, pp. D7.6.1–D7.6.12.
  • [45] M.-H. Cho, K. B. Chung, C. N. Whang, D. W. Lee, and D.-H. Ko, “Phase separation and electronic structure of Hf-silicate film as a function of composition”, Appl. Phys. Lett., vol. 87, pp. 242906-1-3, 2005.
  • [46] J. Robertson, “High dielectric constant gate oxides for metal oxide Si transistors”, Rep. Progr. Phys., vol. 69, pp. 327–396, 2006.
  • [47] G. D. Wilk, R. M. Wallace, and J. M. Anthony, “Hafnium and zirconium silicates for advanced gate dielectrics”, J. Appl. Phys., vol. 87, no. 1, pp. 484–492, 2000.
  • [48] M. Koyama, A. Kaneko, T. Ino, M. Koike, Y. Kamata, R. Iijima, Y. Kamimuta, A. Takashima, M. Suzuki, C. Hongo, and S. Inumiya, “Effects of nitrogen in HfSiON gate dielectric on the electrical and thermal characteristics”, in Int. Electron Dev. Meet. Tech, Dig., San Francisco, USA, 2002, pp. 849–852.
  • [49] M. A. Quevedo-Lopez, M. R. Visokay, J. J. Chambers, M. J. Bevan, A. LiFatou, L. Colombo, M. J. Kim, B. E. Gnade, and R. M.Wallace, “Dopant penetration studies through Hf silicate”, J. Appl. Phys., vol. 97, pp. 043508-1-15, 2005.
  • [50] K. B. Chung, C. N. Whang, M.-H. Cho, C. J. Yim, and D.-H. Ko, “Suppression of phase separation in Hf-silicate films using NH3 annealing treatment”, Appl. Phys. Lett., vol. 88, pp. 081903-1-3, 2006.
  • [51] I. Z. Mitrovic, O. Buiu, S. Hall, C. Bungey, T. Wagner, W. Davey, and Y. Lu, “Electrical and structural properties of hafnium silicate thin films”, Microelectron. Reliab., vol. 47, pp. 645–648, 2007.
  • [52] B. R. Nag, “Empirical formula for the dielectric constant of cubic semiconductors”, Appl. Phys. Lett., vol. 65, no. 15, pp. 1938–1939, 1994.
  • [53] T. Busani and R. A. B. Devine, “The importance of network structure in high-k dielectrics: LaAlO3, Pr2O3, and Ta2O5”, J. Appl. Phys., vol. 98, pp. 044102-1-5, 2005.
  • [54] D. Xue, K. Betzler, and H. Hesse, “Dielectric constants of binary rare-earth compounds”, J. Phys. Cond. Matt., vol. 12, no. 13, pp. 3113–3118, 2000.
  • [55] H. Iwai, S. Ohmi, S. Akama, C. Ohshima, A. Kikuchi, I. Kashiwagi, J. Taguchi, H. Yamamoto, J. Tonotani, and Y. Yoshihara, “Advanced gate dielectric materials for sub-100 nm CMOS”, in Int. Electron Dev. Meet. Tech. Dig., San Francisco, USA, 2002, pp. 625–628.
  • [56] J. Kwo, M. Hong, A. R. Kortan, K. L. Queeney, Y. J. Chabal, R. L. Opila, D. A. Muller, S. N. G. Chu, B. J. Sapjeta, T. S. Lay, J. P. Mannaerts, T. Boone, H. W. Krautter, J. J. Krajewski, A. M. Sergnt, and J. M. Rosamilia, “Properties of high k gate dielectrics Gd2O3 and Y2O3 for Si”, J. Appl. Phys., vol. 89, no. 7, pp. 3920–3927, 2001.
  • [57] S. Ohmi, S. Akama, A. Kikuchi, I. Kashiwagi, C. Ohshima, K. Sato, K. Oshima, and H. Iwai, “Rare earth oxide gate thin films prepared by E-beam deposition”, in Int. Worksh. Gate Insul. IWGI 2001, Tokyo, Japan, 2001, pp. 200–204.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT8-0008-0008
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.