Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The paper deals with investigations of the effect of the stochastic distribution of the initial void ratio in granular bodies on shear localization during shearing of an infinite granular layer 500 mm high with free dilatancy under plane strain conditions. The initial void ratio was assumed to be stochastic with a correlated random field generated by a conditional rejection method by Walukiewicz et al (1997). To simulate mechanical behaviour of a cohesionless granular material during a monotonous deformation path, a micro-polar hypoplastic constitutive law was used, which takes into account particle rotations, curvatures, non-symmetric stresses, couple stresses and the mean grain diameter as a characteristic length. The proposed model captures the salient mechanical features of granular bodies in a wide range of densities and pressures with a single set of constants. In addition, the comparative FE-analyses were carried out with a uniform and spatially non-correlated random fields of the initial void ratio.
Rocznik
Tom
Strony
353--379
Opis fizyczny
Bibliogr. 46 poz., il.
Twórcy
autor
autor
- Gdańsk University of Technology, Faculty of Civil and Environmental Engineering, ul. Narutowicza 11/12, 80-952 Gdańsk, Poland, tejchmk@pg.gda.pl
Bibliografia
- 1. Bauer E. (1996), Calibration of a comprehensive hypoplastic model for granular materials, Soils and Foundations, Vol. 36, No. 1, 13–26.
- 2. Box G. E. P., Muller M. E. (1958), A note of the generation of random normal deviates, Annals. Math. Stat., Vol. 29, 610–611.
- 3. Cambou B., Dubujet P., Nouguier C. (2004), Internal state in granular materials, [in:] Modelling of Cohesive-Frictional Materials (eds.: P. A. Vermeer, W. Ehlers, H. J. Herrmann and E. Ramm), Balkema, 13–25.
- 4. Desrues J., Viggiani G. (2004), Strain localization in sand: overview of the experiments in Grenoble using stereophotogrammetry, Int. J. Numer. Anal. Methods in Geomech, Vol. 28, No. 4, 279–321.
- 5. Fenton G. A. (1999), Estimation for stochastic soil models, J. Geotech. Geoenvironment. Eng., Vol. 125, No. 6, 470–485.
- 6. Fenton G. A., Griffiths D. V. (2002), Probabilistic foundation settlement on spatially random soil, J. Geotech. Geoenvironment. Eng., Vol. 128, No. 5, 381–389.
- 7. Florian A. (1992), An efficient sampling scheme: Updated Latin hypercube sampling, Probabilistic Engineering Mechanics, No. 2, 123–130.
- 8. Górski J. (2006), Non-linear models of structures with random geometric and material imperfections simulation-based approach, Monography, Gdansk University of Technology, No. 68.
- 9. Groen A. E. (1997), Three-dimensional elasto-plastic analysis of soils, PhD Thesis, Delft University, 1–114.
- 10. Gudehus G. (1996), A comprehensive constitutive equation for granular materials, Soils and Foundations, Vol. 36, No. 1, 1–12.
- 11. Gudehus G., N¨ubel K. (2004), Evolution of shear bands in sand, Geotechnique, Vol. 54, No. 3, 187–201.
- 12. Gutierrez M. A., de Borst R. (1998), Energy dissipation, internal length scale and localization patterning – a probabilistic approach, [in:] Computational Mechanics (eds.: S. Idelsohn, E. Onate, E. Dvorkin), CIMNE, Barcelona, 1–9.
- 13. Harris W. W., Viggiani G., Mooney M. A., Finno R. J. (1995), Use of stereophotogrammetry to analyze the development of shear bands in sand, Geotechnical Testing Journal, Vol. 18, No. 4, 405–420.
- 14. Herle I., Gudehus G. (1999), Determination of parameters of a hypoplastic constitutive model from properties of grain assemblies, Mechanics of Cohesive-Frictional Materials, Vol. 4, No. 5, 461–486.
- 15. Lesniewska D., Mróz Z. (2003), Shear bands in soil deformation processes, [in:] Bifurcations and Instabilities in Geomechanics (eds.: J. Labuz and A. Drescher), Swets and Zeitlinger, Lisse, 109–119.
- 16. Maier T. (2002), Numerische Modellierung der Entfestigung im Rahmen der Hypoplastizit¨at, PhD Thesis, University of Dortmund.
- 17. Matthies H., Brenner C. E., Bucher C. G., Soares C. (1997), Uncertainties in probabilistic numerical analysis of structures and solids – stochastic finite elements, Structural Safety, Vol. 19, No. 3, 283–336.
- 18. Niemunis A., Wichtmann T., Petryna Y., Triantafyllidis T. (2005), Stochastic modelling of settlements due to cyclic loading for soil-structure interaction, Proc. Int. Conf. Structural Damage and Lifetime Assessment, Rome, 1–8.
- 19. Nübel K. (2002), Experimental and numerical investigation of shear localisation in granular materials, Publication Series of the Institute of Soil and Rock Mechanics, University Karlsruhe, No. 62.
- 20. Nübel K., Karcher Ch. (1998), FE simulations of granular material with a given frequency distribution of voids as initial condition, Granular Matter, Vol. 1, No. 3, 105–112.
- 21. Oda M. (1993), Micro-fabric and couple stress in shear bands of granular materials, [in:] Powders and Grains (ed.: C. Thornton), Rotterdam, Balkema, 161–167.
- 22. Pasternak E., M¨uhlhaus H.-B. (2001), Cosserat continuum modelling of granulate materials, [in:] Computational Mechanics – New Frontiers for New Millennium (eds.: S. Valliappan S. and N. Khalili), Elsevier Science, 1189–1194.
- 23. Pena A. A., Herrmann H. J., Lizcano A., Alonso-Marroquin F. (2005), Investigation of the asymptotic states of granular materials using a discrete model of anisotropic particles, [in:] Powders and Grains (eds.: Garcia-Rojo R., Herrmann H. J., McNamara S.), Taylor and Francis Group, London, 697–700.
- 24. Przewłócki J., Górski J. (2001), Strip foundation on 2-D and 3-D random subsoil, Probabilistic Engineering Mechanics, No. 16, 121–136.
- 25. Rechenmacher A. L. (2006), Grain-scale processes governing shear band initiation and evolution of sands, J. Mechanics and Physics of Solids, No. 54, 22–45.
- 26. Rechenmacher A. L., Finno R. J. (2003), Shear band displacements and void ratio evolution to critical state in dilative sand, [in:] Bifurcation and Instabilities in Geomechanics (eds.: J. Labuz and A. Drescher), Swets and Zeitlinger, Lisse, 193–205.
- 27. Rechenmacher A. L., Finno R. J. (2004), Digital Image Correlation to evaluate shear banding in dilative sands, Geotechnical Testing Journal, Vol. 27, No. 1, 13–22.
- 28. Rubinstain R. Y. (1981), Simulation and the Monte Carlo method, New York, J. Wiley & Sons.
- 29. Schäfer H. (1962), Versuch einer Elastizit¨atstheorie des zweidimensionalen ebenen Cosserat-Kontinuums, Miszellaneen der Angewandten Mechanik, Festschrift Tolmien, W., Berlin, Akademie-Verlag.
- 30. Shahinpoor M. (1981), Statistical mechanical considerations on storing bulk solids, Bulk Solid Handling, Vol. 1, No. 1, 31–36.
- 31. Sheppard A., Knackstedtr M., Senden T.. Saadatfar M. (2006), Analysis of granular materials using X-ray micro-CT, Proc. 20thCanberra International Summer School and Workshop on Granular Material, 53–53.
- 32. Słominski C., Niedostatkiewicz M., Tejchman J. (2006), Deformation measurements in granular bodies using a Particle Image Velocimetry technique, Archives of Hydro-Engineering and Environmental Mechanics (in print).
- 33. Tejchman J. (1989), Scherzonenbildung und Verspannungseffekte in Granulatem unter Ber¨ucksichtigung von Korndrehungen, Publication Series of the Institute of Soil and Rock Mechanics, University Karlsruhe, No. 117, 1–236.
- 34. Tejchman J. (2004a), Influence of a characteristic length on shear zone formation in hypoplasticity with different enhancements, Computers and Geotechnics, Vol. 31, No. 8, 595–611.
- 35. Tejchman J. (2004b), FE-analysis of patterning of shear zones in granular bodies for earth pressure problems of a retaining wall, Archives of Hydro-Engineering and Environmental Mechanics, Vol. 51, No. 4, 317–348.
- 36. Tejchman J. (2006), Effect of fluctuation of current void ratio on the shear zone formation in granular bodies within micro-polar hypoplasticity, Computers and Geotechnics, Vol. 33, No. 1, 29–46.
- 37. Tejchman J., Bauer E. (1996), Numerical simulation of shear band formation with a polar hypoplastic model, Computers and Geotechnics, Vol. 19, No. 3, 221–244.
- 38. Tejchman J., Górski J. (2006), Effect of a spatially distribution random distribution of initial void ratio on shear zone formation, Proc. 35thInt. Solid Mechanics Conference Solmech, Krakow, 4–8.09.2006, 31–32.
- 39. Tejchman J., Gudehus G. (2001), Shearing of a narrow granular strip with polar quantities, J. Num. and Anal. Methods in Geomechanics, No. 25, 1–18.
- 40. Tejchman J., Niemunis A. (2006), FE-studies on shear localization in an anisotropic micro-polar hypoplastic granular material, Granular Matter, Vol. 8, No. 3–4, 205–220.
- 41. Vardoulakis I. (1980), Shear band inclination and shear modulus in biaxial tests, Int. J. Num. Anal. Meth. Geomech., No. 4, 103–119.
- 42. Vorechovsky M., Matesova D. (2006), Size effect in concrete specimens under tension: interplay of sources, [in:] Computational Modelling of Concrete Structures, EURO-C (eds.: G. Meschke, R. de Borst, H. Mang and N. Bicanic), Taylor and Francis, 905–914.
- 43. Walukiewicz H., Bielewicz E., Górski J. (1997), Simulation of nonhomogeneous random fields for structural applications, Computers and Structures, Vol. 64, No. 1–4, 491–498.
- 44. Wang C. C. (1970), A new representation theorem for isotropic functions. J. Rat. Mech. Anal., No. 36, 166–223.
- 45. Wolffersdorff P. A. von (1996), A hypoplastic relation for granular materials with a predefined limit state surface, Mechanics Cohesive-Frictional Materials, No. 1, 251–271.
- 46. Yoshida Y., Tatsuoka T., Siddiquee M. S. (1994), Shear banding in sands observed in plane strain compression, [in:] Localisation and Bifurcation Theory for Soils and Rocks, (eds.: R. Chambon, J. Desrues and I. Vardoulakis), Balkema, Rotterdam, 165–181.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT8-0004-0027