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Abstract
The paper deals with investigations of the effect of the stochastic distribution of the initial
void ratio in granular bodies on shear localization during shearing of an infinite granular layer
500 mm high with free dilatancy under plane strain conditions. The initial void ratio was
assumed to be stochastic with a correlated random field generated by a conditional rejection
method by Walukiewicz et al (1997). To simulate mechanical behaviour of a cohesionless
granular material during a monotonous deformation path, a micro-polar hypoplastic consti-
tutive law was used, which takes into account particle rotations, curvatures, non-symmetric
stresses, couple stresses and the mean grain diameter as a characteristic length. The proposed
model captures the salient mechanical features of granular bodies in a wide range of densities
and pressures with a single set of constants. In addition, the comparative FE-analyses were
carried out with a uniform and spatially non-correlated random fields of the initial void
ratio.

Key words: granular material, micro-polar hypoplasticity, shear localization, correlated ran-
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1. Introduction

One of the most crucial material parameters influencing the behaviour of granular
bodies during different processes of flow is the initial void ratio. The effect of the
mean initial void ratio on the material behaviour is well recognized. The plane strain
compression experiments demonstrate that the shear resistance increases and shear
zone thickness decreases with decreasing mean initial void ratio (Vardoulakis 1980,
Tejchman 1989, Yoshida et al 1994, Harris et al 1995, Desrues and Viggiani 2004).
In turn, the shear zone inclination relative to the direction of the minor principal
stress increases with decreasing initial void ratio (Rechenmacher and Finno 2003).
The position of the critical state line in void-effective stress space is not unique,
depending upon deposition void ratio. Since granular materials build discrete sys-
tems composed of grains with different shape, size, roundness and roughness, the
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distribution of the initial void ratio can be strongly non-uniform. Recently, Rechen-
macher and Finno (2004) and Rechenmacher (2006) have shown, using a Digital
Image Correlation (DIC) method, that the distribution of the void ratio is locally
non-uniform along and across of the interior shear zone (a non-uniformity along
the shear zone was partly also due to the presence of boundaries). Thus, not only
the mean global initial void ratio, but also its initial spatial fluctuations are of major
importance in order to understand the phenomenon of shear localization in granular
bodies.

Different probability distributions of the initial void ratio can be assumed in
granular specimens (Shahinpoor 1981, Matthies et al 1997, Gutierrez and de Borst
1998, Fenton 1999, Fenton and Griffiths 2002, Nübel 2002, Niemunis et al 2005).
In general, it is not easy to assume a realistic probability distribution of the initial
void ratio, due to the lack of the corresponding experimental data.

The intention of the numerical simulations is to show the effect of different
probability distributions of the initial void ratio on shear localization during shear-
ing of an infinite granular layer of sand under quasi-static plane strain conditions.
By assuming periodic boundary conditions along both sides, the FE-results were
independent of the layer width. Thus, it was possible to apply a minimum amount
of finite elements in a horizontal direction and a large amount of small finite ele-
ments in a vertical direction. The height of the finite elements assumed was never
larger than five times the mean grain diameter to capture shear localization properly
(Tejchman and Bauer 1996). Finite element calculations were carried out on the
basis of a micro-polar hypoplastic constitutive model (Tejchman and Gudehus 2001,
Tejchman 2004a, 2006, Tejchman and Niemunis 2006) which is able to describe the
essential properties of granular bodies during shear localization in a wide range of
pressures and densities during monotonous deformation paths. First, the calculations
were performed with a uniform probability distribution of the initial void ratio in
sand for four different initial densities. Then the calculations were also carried out
with different correlated random fields of the initial void ratio generated using a con-
ditional rejection method (Walukiewicz et al 1997, Przewłócki and Górski 2001,
Górski 2006). Finally, the calculations were carried out for comparative purposes
with different spatially non-correlated random fields of an initial void ratio which
are often applied in numerical calculations, for the sake of simplicity, to promote
shear localization (Gudehus and Nübel 2004, Nübel and Karcher 1998, Leśniewska
and Mróz 2003, Tejchman 2004b, Tejchman and Niemunis 2006).

The effect of the distribution of the correlated random field of the initial void
ratio on shear localization has not yet been investigated in detail. Due to the lack of
the experimental data, the FE-results could not been compared with any laboratory
tests. However, they can constitute a basis for comparison with eventual future
both laboratory experiments using a DIC (Rechenmacher 2006), PIV (Słomiński
et al 2006), X-ray micro-CT technique (Sheppard et al 2006), or DEM-simulations
(Cambou et al 2004, Pena et al 2005).
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The present paper is organized as follows. In Section 2, a micro-polar hypoplastic
model is briefly described. Section 3 deals with the simulation of discrete random
fields. The information about the finite element discretisation and boundary condi-
tions is given in Section 4. The numerical results showing the effect of different
distributions of the initial void ratio on shear localization are discussed in Section
5. Finally, conclusions are given in Section 6.

2. Micro-polar Hypoplastic Model

Non-polar hypoplastic constitutive laws (Gudehus 1996, Bauer 1996, von Wolffers-
dorff 1996) describe the evolution of effective stress tensor depending on the current
void ratio, stress state and rate of deformation by isotropic linear and non-linear ten-
sorial functions according to the representation theorem by Wang (1970). They were
formulated by a heuristic process considering the essential mechanical properties
of granular materials observed with homogeneous deformations. While in hypere-
lastic and hypoelastic models, the constitutive equation is incrementally linear, it
is incrementally non-linear in hypoplasticity. Due to the incremental non-linearity
with the rate of deformation, they are able to describe both a non-linear stress-strain
and volumetric behaviour of granular bodies during shearing up to and after the
peak, with a single tensorial equation. They include also: barotropy (dependence
on pressure level), pycnotropy (dependence on density), dilatancy and contractancy
and material softening during shearing of a dense material. They are apt to describe
critical states, i.e. states in which a grain aggregate can continuously be deformed
at a constant stress and a constant volume under a certain rate of deformation. In
contrast to elasto-plastic models, a decomposition of deformation components into
elastic and plastic parts, the formulation of a yield surface, plastic potential, flow rule
and hardening rule is not needed. Although, the hypoplastic models are developed
without recourse to concepts of the theory of plasticity, failure surface, flow rule
and plastic potential are obtained as natural outcomes. The feature of the model is
a simple formulation and procedure for determination of material parameters with
standard laboratory experiments. The parameters are related to granulometric prop-
erties encompassing grain-size distribution curve, shape, angularity and hardness
of grains (Herle and Gudehus 1999). Owing to that, one set of material parameters
is valid within a large range of pressures and densities.

A hypoplastic constitutive law cannot describe realistically shear localization,
since it does not include a characteristic length of microstructure. A characteristic
length can be taken into account in hypoplasticity by means of a micro-polar,
non-local and second-gradient theory (Maier 2002, Tejchman 2004a). In this pa-
per, a micro-polar theory was taken advantage of. A micro-polar model has good
physical grounds, since it takes into account rotations and couple stresses which are
observed during shearing, but remain negligible during homogeneous deformation
(Oda 1993). Pasternak and Mühlhaus (2001) have demonstrated that the additional
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rotational degree of freedom of a Cosserat continuum arises naturally by mathe-
matical homogenization of an originally discrete system of spherical grains with
contact forces and contact moments. The Cosserat model is only suitable for shear
dominated problems. To describe large geotechnical problems, a micro-polar hy-
poplastic model has to be used with a remeshing technique or with special interface
elements, due to the fact that the size of finite elements has to be sufficiently small
(< 5 × lc, lc – characteristic length) to capture properly shear localization.

A micro-polar continuum takes into account two linked levels of deformation:
micro-rotation at the particle level and macro-deformation at the structural level
(Schäfer 1962). Each material point has, for the case of plane strain, three degrees
of freedom: two translational degrees of freedom and one independent rotational
degree of freedom (Fig. 1). The gradients of the rotation are connected to curvatures
which are associated with couple stresses. It leads to a non-symmetry of the stress
tensor and the presence of a characteristic length.

Fig. 1. Plane strain Cosserat continuum: a) degrees of freedom (u1 – horizontal displace-
ment, u2 – vertical displacement, ωc – Cosserat rotation), b) stresses σi j and couple stresses

mi at an element
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The constitutive law can be summarized for plane strain as follows (Tejchman
and Gudehus 2001, Tejchman 2004a, Tejchman and Niemunis 2006):
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wherein:

ac – micro-polar constant,
a1 – parameter representing the deviatoric part of the normalized stress

in critical states (Bauer 1996),
dc

i j – polar rate of deformation tensor,
dkl – rate of deformation tensor (stretching tensor),
d50 – mean grain diameter,
e – current void ratio,
ec – critical void ratio (ec0 – value of ec for σkk = 0),
ed – void ratio at maximum densification (ed0 – value of ed for σkk = 0),
ei – maximum void ratio (ei0 – value of ei for σkk = 0),
fd – density factor,
fs – stiffness factor,
hs – granulate hardness,
ki – rate of curvature vector,
mi – Cauchy couple stress vector,
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◦
mi – Jaumann couple stress rate vector (objective couple stress rate vec-

tor),
n – compression coefficient,
v – material velocity,
wc – rate of Cosserat rotation,
wi j – spin tensor,
α – pycnotropy coefficient,
β – stiffness coefficient,
θ – Lode angle,
φc – critical angle of internal friction during stationary flow,
σi j – Cauchy stress tensor,
σ∗i j – deviatoric part of σi j ,
◦
σi j – Jaumann stress rate tensor (objective stress rate tensor),
σkk – mean stress.

A micro-polar parameter ac can be correlated with the grain roughness with
the aid of a numerical analysis for shearing of a narrow granular strip between two
very rough boundaries (Tejchman and Gudehus 2001). It can be represented by
a constant value of ac (e.g. ac = 1 ÷ 5). In this case, the function Nc

i = (1 ÷ 5)a2
1m̂i

(Eq. 6). It can also be connected to the parameter a1 (e.g. ac = (0.5 ÷ 1.5) × a−1
1 . In

this case, the function Nc
i = (0.5 ÷ 1.5)a1m̂i (Eq. 6). The parameter a−1

1 is equal to
3.0–4.3 for the usual critical friction angles of granulates.

The constitutive relationship requires the following ten material constants:
ei0, ed0, ec0, φc, hs, β, n, α, ac and d50. The parameters hs and n are estimated from a
single oedometric compression test with an initially loose specimen (hs reflects the
slope of the curve in a semi-logarithmic representation, and n its curvature). The
constants α and β are found from a triaxial or plane strain test with a dense specimen
and trigger the magnitude and position of the peak friction angle. The angle φc is
determined from the angle of repose, or measured in a triaxial test with a loose
specimen. The values of ei0, ed0, ec0 and d50 are obtained with conventional index
tests (ec0 ≈ emax, ed0 ≈ emin, ei0 ≈ (1.1 ÷ 1.5)emax). The FE-analyses were carried out
with the material constants for so-called Karlsruhe sand (Tejchman and Gudehus
2001): ei0 = 1.30, ed0 = 0.51, ec0 = 0.82, φc = 30◦, hs = 190 MPa, β = 1, n = 0.50,
α = 0.30, ac = a−1

1 and d50 = 0.5 mm.

3. Simulation of Correlated Random Fields

A correlated random field of the initial void ratio eo was assumed in the form of
a two-dimensional Gaussian random field. The midpoint method was applied. The
method approximated the random field in each finite element by a single random
variable defined as the value of the field at its centre. Randomness of the initial void
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ratio was described by the following homogeneous covariance function (Przewłócki
and Górski 2001)

K(x1, x2) = s2
d × e−λx1∆x1(1 + λx1∆x1) × e−λx1∆x1(1 + λx2∆x2), (24)

where ∆x1 and ∆x2 are the distances between two field points along the axes x1
and x2, λx1 and λx2 are the decay coefficients characterizing a spatial variability of
the specimen properties while the standard deviation sd represents their scattering.
Random fields in the amount of 2000 were generated using a conditional rejec-
tion method proposed by Walukiewicz et al (1997). A discrete random field was
described by multidimensional random variables defined at mesh nodes. The field
was represented by the random vector x(m × 1), and its mean value x̄(m × 1). The
covariance function was replaced by the symmetric and positively defined covari-
ance matrix K(m × m). The random variable vector x(m × 1) was divided into blocks
consisting of the unknown xu(n × 1) and the known xk(p × 1) elements (n + p = m).
The covariance matrix K(m × m) and the expected values vector x̄(m × 1) were also
appropriately split:
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distribution
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expected value vector:
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Fig. 2. Successive coverage of field points with a moving propagation scheme (Górski 2006)
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Generally, the single variable was determined in accordance with the random
field boundaries

xi = ai + (bi − ai) ui, i = 1, ...,m, (31)

where ui are the random variables uniformly distributed in the interval [0,1], and
(ai, bi), i = 1, 2, ... ,m are intervals of the reals (an envelope of the random field).
The parameters (ai, bi) can be related to the standard deviation sd . Here, to generate
the initial void ratio, the following field boundaries are assumed: ai, bi = eo ∓ 6sd ,
where eo = 0.60 (dense sand). It should be pointed out that the void ratio scattering
in the specimen was also limited by the pressure dependent void ratios ei0 (upper
bound) and ed0 (lower bound), Eqs. (15 and 16), which are essential for large
standard deviations.

The simulation process was divided into three stages. First, the four corner
random values were generated. Next, a propagation scheme with a growing number
of points covered a defined base scheme of the field mesh. In the third stage, the
base scheme was appropriately shifted, and the next group of unknown random
values was simulated (Fig. 2). The base scheme was translated so as to cover all
the field nodes.
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For the sake of simplicity and for a significant reduction of the computation
time, only single realizations of the random correlated fields were performed. A cal-
culation of a sufficient number of nonlinear realizations which can guarantee the
convergence of the outputs is at present impossible due to a limited computer capac-
ity. In the next working steps, selected representative random fields will be chosen
using the idea of the stratified sampling (Rubinstain 1981) or the Latin hypercube
sampling method (Florian 1992, Vorechovsky and Matesova 2006) which feature
is that the joint probability distribution functions for random variables are divided
into intervals with equal probability.

In addition, three different spatially non-correlated distributions of the initial
void ratio were assumed. In the first case, the initial void ratio eo was randomly
distributed by means of a random generator in such a way that the initial void ratio
was increased in every element layer by the value a × r, where a is a constant and
r is a random number between 0 and 1 (Tejchman 2004b). Thus, the fluctuating
initial void ratio in an initially dense specimen with the mean value of 0.60 was
equal to

eo = 0.55 + 0.1r or eo = 0.50 + 0.2r. (32)

In the second case, the spatially fluctuating initial void ratio e was calculated
from the formula given by Shahinpoor (1981), Nübel and Karcher (1998), Gudehus
and Nübel (2004), Tejchman and Niemunis (2006):

e = −
1
ξ

ln
[(

1 − r) exp(−ξem) + r exp(−ξeM
)]
, (33)

wherein the parameters are: ξ = 1.0 (for the mean void ratio of 0.60), em = 0.001
and eM = 1.641. Eq. 33 has been derived analogously to the partition function of
statistical mechanics, however, imposing bounds em and eM upon the size of the
individual Voronoi cells. The deviation of the distribution of void ratio increases
with decreasing number of voids (grains) in a volume element and decreasing
mean global void ratio of the specimen. Since the area of each finite element was
5d50 × 5d50, the initial void ratio in each element was assumed as the mean value
of 25 random values calculated by Eq. 33.

In the third case, a Gaussian distribution of eo was used using a polar form of
the so-called Box-Muller transformation (Box and Muller 1958, Tejchman 2006).
One assumed the mean value of the initial void ratio ē0 = 0.60 with a standard
deviation of sd = 0.05 or 0.20 and a cut-off of ±0.3.

The calculations of a stochastic size effect were carried out for two different
decay coefficients: λx1 = 1 (strongly correlated field) or λx1 = 3 (weakly correlated
field) and two different standard deviations 0.05 and 0.2. The initial void ratio eo
was distributed in two ways. In the first case, the same initial void ratio was assumed
in each triangular element belonging to the quadrilateral (so-called approach ‘A’).
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Fig. 3. Distribution of correlated random field of initial void ratio along the layer height
ho = 500 mm (approach ‘A’): a) ēo = 0.60, sd = 0.05, λx2 = 1, b) ēo = 0.60, sd = 0.05,

λx2 = 3, c) ēo = 0.60, sd = 0.2, λx2 = 1, d) ēo = 0.60, sd = 0.2, λx2 = 3

Only one-dimensional random field was generated (one assumed ∆x1 = 0 and the
value of the decay coefficient λx1 in the x1 direction turned out to be unimportant
in Eq. 24), and the initial void ratio was the same in a horizontal direction x1.

In addition, the different initial void ratio was calculated for all individual tri-
angular finite elements (so-called approach ‘B’) to check the effect of horizontal
imperfections on the material behaviour. As the two-dimensional random field was
applied, the initial void ratio was assumed to vary also in a horizontal direction
along x1 (the correlation distance was ∆x1 = 2.5 mm in Eq. 24). By assuming such
small changes of eo in a horizontal direction, the results were only insignificantly
affected by the layer width. These comparative calculations were performed with
the same layer widths and heights as in the case of the method ‘A’.

Figures 3 and 4 show some single random distributions of eo generated initially
for simulations.

4. FE-input Data

FE-calculations of plane strain simple shearing under vertical pressure with free
dilatancy (Tejchman and Gudehus 2001) were performed for an infinite granular
layer with a height of ho = 500 mm. For this height, the thickness of the shear zone
does not certainly depend on the specimen size (Tejchman and Gudehus 2001).
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Fig. 4. Distribution of spatially non-correlated initial void ratio along the layer height
ho = 500 mm: a) eo = 0.55 + 0.1r, b) non-correlated Gaussian (ēo = 0.60, sd = 0.05), c) by

Shahinpoor (1981) (ēo = 0.60)

Quadrilateral finite elements composed of four diagonally crossed triangles were
applied to avoid volumetric locking (Groen 1997). The calculations were performed
with a section of an infinite shear layer with a width of b = ho, discretised by 200
quadrilateral elements. The height of the elements was always 5 × d50 to obtain
mesh-independent results (Tejchman and Bauer 1996). The behaviour of an in-
finite shear layer is modelled by lateral boundary conditions, i.e. displacements
and rotations along both sides of the column are constrained by the same amount
(Tejchman and Gudehus 2001). Consequently, the evolution of state quantities is
independent of the direction of shearing if an initially homogeneous state is consid-
ered. The integration was performed with three sampling points placed in the middle
of each element side. Linear shape functions for displacements and the Cosserat
rotation were used. The calculations were carried out with large deformations and
curvatures using the so-called updated Lagrange formulation, i.e. by updating the
element geometry and element volume after each integration step. As the initial
stress state in the granular strip, a Ko-state without polar quantities (σ22 = −1.0
kPa, σ11 = σ33 = −0.3 kPa, σ12 = σ21 = m1 = m2 = 0) was assumed (σ11 – hori-
zontal normal stress, σ22 – vertical normal stress, σ33 – horizontal normal stress
perpendicular to the plane of deformation, σ12 – horizontal shear stress, σ21 –
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vertical shear stress, m1 – horizontal couple stress, m2 – vertical couple stress, Fig.
1b). The influence of the gravity was neglected.

A quasi-static shear deformation was initiated through constant horizontal dis-
placement increments ∆u prescribed at the nodes along the top of the layer
(∆u/ho = 0.000001). Both bottom and top surfaces were assumed to be very rough,
i.e. sliding and rotation of particles against the bounding surface were excluded.
The boundary conditions were along the bottom: u1 = 0, u2 = 0 and ωc = 0, and
along the top: u1 = n∆u, ωc = 0, and σ22 = p. The index ‘1’ denotes the co-ordinate
in the direction of shearing, and the index ‘2’ denotes the co-ordinate normal to the
direction of shearing, n is the number of time steps (n = 20000), ∆u is the constant
displacement increment in one step and p denotes the prescribed vertical surface
pressure, which was kept constant along the top of the layer. The vertical pressures
were assumed to be p = 200 kPa.

For the solution of the non-linear equation system, a modified Newton-Raphson
scheme with line search was used. The global stiffness matrix was calculated with
only two first terms of the constitutive equations. The stiffness matrix was updated
every 100 steps. To accelerate the calculations, the initial increments of displace-
ments and Cosserat rotations during shearing in one direction were assumed to be
equal to the converged incremental nodal displacement and rotation solutions from
the previous step. The iteration steps were performed using translational and rota-
tional convergence criteria. For the time integration of stresses and couple stresses
in finite elements, a one-step Euler forward scheme was applied.

5. FE-results

5.1. Uniform Distribution of the Initial Void Ratio

Figs. 5–8 show calculations results for a sand layer with different uniform initial
void ratios in the range of 0.60–0.90. Fig. 5 presents the evolution of the mobi-
lized internal friction angle φ = arctan(σ12/σ22) against the normalized horizontal
displacement of the top boundary ut

1/ho. The mobilized friction angle φ is related
to the entire granular layer since the stresses σ12 and σ22 are independent of both
the height and length of the layer. The deformed FE-meshes at residual state are
shown in Fig. 6. In turn, Fig. 7 presents the distribution of the Cosserat rotation ωc

and void ratio e across the normalized height x2/d50. The relationship between the
thickness of the shear zone ts and initial void ratio eo is demonstrated in Fig. 8.

All state variables (stress, couple stress, mobilized friction angle and void ratio)
tend to asymptotic values. The mobilized internal friction angle for dense and
medium dense sand (eo ≤ 0.80) increases, shows a peak and decreases later. For
loose sand (eo = 0.90), it does not indicate any peak. The mobilized friction angle
at peak φp decreases obviously with increasing eo: φp = 45.1◦ (eo = 0.60), φp =

37.0◦ (eo = 0.70) and φp = 31.3◦ (eo = 0.80). The residual friction angle similarly
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Fig. 5. Evolution of mobilized internal friction angle φ versus ut
1/ho during shearing with

uniform distribution of the initial void ratio: a) eo = 0.60, b) eo = 0.70, c) eo = 0.80,
d) eo = 0.90

Fig. 6. Deformed FE-meshes at residual state during shearing with uniform distribution of
the initial void ratio: a) eo = 0.60, b) eo = 0.70, c) eo = 0.80, d) eo = 0.90
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Fig. 7. Distribution of Cosserat rotation ωc and void ratio e across the normalized height
x2/d50 at residual state with uniform distribution of the initial void ratio: a) eo = 0.60,

b) eo = 0.70, c) eo = 0.80

Fig. 8. Relationship between normalized shear zone thickness ts/d50 at residual state and
initial void ratio eo in the range 0.60–0.80 (uniform distribution of the initial void ratio)
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behaves: φcr = 31◦ (eo = 0.60), φcr = 30.0◦ (eo = 0.70), φcr = 29.4◦ (eo = 0.80) and
φp = 28.4◦ (eo = 0.90 mm).

The width of the shear zone appearing inside the layer (characterized among
others by the presence of Cosserat rotation, Fig. 7) almost linearly increases with
increasing eo: 16 × d50 (eo = 0.60), 25 × d50 (eo = 0.70 mm) and 40 × d50 (eo = 0.80
mm), (Fig. 8). If the initial void ratio is larger than the pressure-dependent critical
void ratio by Eq. 17 (eo = 0.90 > ec), the width of the shear zone is equal to the
layer height 1000 × d50 (Fig. 6d). The void ratio reaches in the shear zone (Fig. 7)
a pressure dependent value depicted by Eq. 17.

5.2. Correlated Random Fields of the Initial Void Ratio

The FE-results for single realizations with a spatially distribution of the initial void
ratio are shown in Figs. 9–13.

Fig. 9. Evolution of mobilized internal friction angle φ versus ut
1/ho during shearing with

dense sand (correlated random field of eo, approach ‘A’): a) ēo = 0.60, sd = 0.05, λx2 = 1,
b) ēo = 0.60, sd = 0.05, λx2 = 3, c) ēo = 0.60, sd = 0.2, λx2 = 1, d) ēo = 0.60, sd = 0.2,

λx2 = 3

In the case of approach ‘A’ (∆x1 = 0 in Eq. 24), the mobilized friction an-
gle at peak decreases with increasing decay coefficient λx2 and standard devia-
tion sd (Fig. 9): φp = 35.1◦ (λx2 = 1, sd = 0.05), φp = 34.3◦ (λx2 = 3, sd = 0.05),
φp = 30.8◦ (λx2 = 1, sd = 0.2) and φp = 30.2◦ (λx2 = 3, sd = 0.2). Thus, it is signif-
icantly smaller than this with the uniform distribution of eo = 0.60 (φp = 45.1◦). In
turn, the residual friction angle is similar, about φres = 30◦.

During initial shearing, several parallel shear zones again occur (Fig. 10). Next,
only one develops horizontally at the weakest spot. The thickness of the shear zone
mainly decreases with increasing λx2 and sd: 30 × d50 (λx2 = 1, sd = 0.05), 22 × d50
(λx2 = 3, sd = 0.05), 30 × d50 (λx2 = 1, sd = 0.2) and 30 × d50 (λx2 = 3, sd = 0.2),
Fig. 11.

In the case of the approach ‘B’ (∆x1 , 0 in Eq. 24), the mobilized friction angle
at peak is higher and the residual mobilized friction angle is similar as compared to
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Fig. 10. Distribution of void ratio e during initial shearing with dense sand (ēo = 0.60,
p = 200 kPa), correlated random field of eo, approach ‘A’, sd = 0.05, λx2 = 1, darker colour

denotes an increase of e
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Fig. 11. Distribution of Cosserat rotation ωc across the normalized height x2/d50 in
dense sand (ēo = 0.60, correlated random field of eo, approach ‘A’): a) sd = 0.05, λx2 = 1,

b) sd = 0.05, λx2 = 3, c) sd = 0.2, λx2 = 1, d) sd = 0.2, λx2 = 3

Fig. 12. Evolution of mobilized internal friction angle φ versus ut
1/ho during shearing

with dense sand (ēo = 0.60, correlated random field of eo, approach ‘B’): a) sd = 0.05,
λx1 = λx2 = 1, b) sd = 0.05, λx1 = λx2 = 3
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Fig. 13. Distribution of Cosserat rotation ωc across the normalized height x2/d50 in dense
sand (ēo = 0.60, correlated random field of eo, approach ‘B’): a) sd = 0.05, λx1 = λx2 = 1,

b) sd = 0.05, λx1 = λx2 = 3

the approach ‘A’: φp = 37.8◦ and φres = 30.3◦ (λx1 = λx2 = 1, sd = 0.05), and φp =

37.8o and φres = 31.0◦ (λx1 = λx2 = 3, sd = 0.05), (Fig. 12). The thickness of the
shear zone is smaller (Fig. 13): 20 × d50 (λx1 = λx2 = 1, sd = 0.05) and 15 × d50
(λx1 = λx2 = 3, sd = 0.05).

5.3. Non-correlated Random Fields of the Initial Void Ratio

Figs. 14–16 demonstrate the FE-results of shearing for single realizations with
random fields of eo generated by Eqs. 32 (Fig. 14), by Eq. 33 according to the
Shahinpoor’s (Shahinpoor 1981) idea (Fig. 15) and by a Gaussian function (Fig.
16), respectively.

Using random fields generated by Eq. 32, the mobilized internal friction an-
gles are: φp = 41.5◦ and φres = 30.3◦ (eo = 0.55 + 0.1r, approach ‘A’), φp = 38.3◦

and φres = 30.3o (eo = 0.50 + 0.2r, approach ‘A’), φp = 44.0◦ and φres = 31.0o (eo =

0.55 + 0.1r, approach ‘B’) and φp = 41.9◦ and φres = 31.1o (eo = 0.50 + 0.2r, ap-
proach ‘B’). The width of the shear zone is: 20 × d50 (eo = 0.55 + 0.1r, approach
‘A’), 20 × d50 (eo = 0.50 + 0.2r, approach ‘A’), 12 × d50 (eo = 0.55 + 0.1r, approach
‘B’) and 12 × d50 (eo = 0.50 + 0.2r, approach ‘B’).
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Fig. 14. Evolution of mobilized internal friction angle φ versus ut
1/ho and distribution of

Cosserat rotation ωc across the normalized height x2/d50 during shearing with dense sand:
a) eo = 0.60, b) eo = 0.55 + 0.1r (approach ‘A’), c) eo = 0.50 + 0.2r (approach ‘A’), d) eo =

0.55 + 0.1r (approach ‘B’), e) eo = 0.50 + 0.2r (approach ‘B’)



Stochastic FE-Analysis of Shear Localization in 2D . . . 373

Fig. 15. Evolution of mobilized internal friction angle φ versus ut
1/ho and distribution of

Cosserat rotation ωc across the normalized height x2/d50 during shearing with dense sand:
a) eo = 0.60, b) Gaussian (ēo = 0.60, sd = 0.05, approach ‘A’), c) Gaussian (ēo = 0.60,
sd = 0.2, approach ‘A’), d) Gaussian (ēo = 0.60, sd = 0.05, approach ‘B’), e) Gaussian

(ēo = 0.60, sd = 0.2, approach ‘B’)
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Fig. 16. Evolution of mobilized internal friction angle φ versus ut
1/ho and distribution of

Cosserat rotation ωc across the normalized height x2/d50 during shearing with dense sand:
a) eo = 0.60, b) by Shahinpoor (1981) (ēo = 0.60, approach ‘A’), c) by Shahinpoor (1981)

(ēo = 0.60, approach ‘B’)
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Fig. 17. Mobilized internal friction angles at peak φp for different distributions n of the
initial void ratio eo: n = 1 – uniform, n = 2 – correlated random field in the approach
‘A’, n = 3 – correlated random field in the approach ‘B’, n = 4 – non-correlated random
field by Eq. 32 (approach ‘A’), n = 5 non-correlated random field by Eq. 32 (approach ‘B’),
n = 6 – non-correlated random Gaussian field (approach ‘A’), n = 7 – non-correlated random
Gaussian field (approach ‘B’), n = 8 – non-correlated random field by Shahinpoor (1981)
(approach ‘A’), n = 9 – non-correlated random field by Shahinpoor (1981) (approach ‘B’)

In the case of random fields depicted with a Gaussian function, the mobi-
lized internal friction angles are: φp = 38.7◦ and φres = 31.0o (ēo = 0.60, sd = 0.05,
approach ‘A’), φp = 32.1◦ and φres = 31.1◦ (ēo = 0.60, sd = 0.20, approach ‘A’),
φp = 42.7o and φres = 31.6◦ (ēo = 0.60, sd = 0.05, approach ‘B’) and φp = 38.7◦

and φres = 31.0o (ēo = 0.60, sd = 0.20, approach ‘B’). The width of the shear zone
is: 15 × d50 (ēo = 0.60, sd = 0.05, approach ‘A’), 15 × d50 (ēo = 0.60, sd = 0.20, ap-
proach ‘A’), 10 × d50 (ēo = 0.60, sd = 0.05, approach ‘B’) and 10 × d50 (ēo = 0.60,
sd = 0.20, approach ‘B’).

When the initial void ratio is distributed according to Eq. 33 (Shahinpoor 1981),
the mobilized internal friction angles are: φp = 34.5◦ and φres = 31.1◦ (ēo = 0.60,
approach ‘A’) and φp = 41.6◦ and φres = 31.0◦ (ēo = 0.60, approach ‘B’) with the
shear zone thickness of 15 × d50 (ēo = 0.60, approaches ‘A’ and ‘B’).

The maximum friction angle is smaller than this with the uniform distribution of
the initial void ratio. The results show that the larger the standard deviation sd , the
smaller ts and φp. In the case of the horizontal non-uniformity of eo, the maximum
friction angle is higher and shear zone thickness is smaller.

The values of φp for different distributions of eo are summarized in Fig. 17.
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6. Conclusions

The following conclusions can be drawn on the initial FE-investigations of the effect
of the distribution of the initial void ratio during shearing of an infinite granular
layer:

– the thickness of the shear zone ts at residual state increases with increasing
initial void ratio eo from 16 × d50 up to 40 × d50 in the range of eo = 0.60–0.80
with the uniform distribution of the initial void ratio.

– The effect of the stochastic initial distribution of the initial void ratio significantly
influences the maximum internal friction angle and the thickness of the shear
zone. The residual friction angle remains the same.

– The shear resistance at peak is always smaller with the stochastic distribution
of the initial void ratio as compared to this with the uniform one. Thus, the
weakest link principle always applies here due to the shear localization forming
in a horizontal weak layer.

– The shear resistance at peak is larger and the shear zone thickness is smaller
when imperfections are taken into account also in a horizontal direction.

– For the spatial correlated distribution of eo, the thickness of the shear zone,
ts = (15 − 30) × d50, can be significantly larger than this using the non-uniform
distribution (ts = 16 × d50). It is also generally larger to those obtained with the
non-correlated distributions (ts = (12 − 20) × d50).

– For the spatial correlated distribution of eo, in general, the shear resistance at
peak is smaller as compared with the non-correlated distributions.

– Several horizontal shear zones occur during initial shearing. Later, only one
dominates.

– The shear resistance at peak and the thickness of the shear zone decrease with
increasing standard deviation and decay coefficients.

It should be pointed out that the stochastic FE-analysis performed in this paper
can only be considered as a preliminary one since only few samples have been
calculated. It will be continued. Selected random fields will be chosen. The choice of
the representative samples will be governed by the stratified or the Latin hypercube
sampling method (Tejchman and Górski 2006). Thus, a statistical effect can be
captured.
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