PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Two-dimensional vertical Reynolds-Averaged Navier-Stokes equations versus one-dimensional Saint-Venant model for rapidly varied open channel water flow modelling

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper concerns mathematical modelling of free surface open channel water flow. In order to simulate the flow two models are used -- two-dimensional vertical Reynolds-Averaged Navier-Stokes equations and one-dimensional Saint-Venant equations. The former is solved with SIPMLE algorithm of finite difference method using Marker and Cell technique to trace a free surface movement. The latter is solved using the finite volume method. The dam-break (water column collapse) problem on horizontal bottom is investigated as a test case. The calculated results are compared with each other. The numerical simulations are examined against laboratory experiment presented by Koshizuka et al (1995). The possibility of using the described models to simulate rapidly varied flow is discussed.
Twórcy
autor
  • Gdańsk University of Technology, Faculty for Civil and Environmental Engineering, ul. Narutowicza 11/12, 80-952 Gdańsk, Poland, mszyd@pg.gda.pl
Bibliografia
  • 1. Abbott M. B. (1979), Computational Hydraulics: Elements of the Theory of Free-Surface Flows, Pitman, London.
  • 2. Anderson J. D. (1995), Computational Fluid Dynamics, McGraw-Hill Inc., New York.
  • 3. Bermudez A., Vazquez M. E. (1994), Upwind methods for hyperbolic conservation laws with source terms, Computers and Fluids, 23, 1049–1071.
  • 4. Cunge J. A., Holly Jr F. M., Verwey A. (1980), Practical Aspects of Computational River Hydraulics, Pitman, London.
  • 5. Fletcher C. A. J. (1991), Computational Techniques for Fluid Dynamics 1. Fundamental and General Techniques, Springer-Verlag, Berlin.
  • 6. Granatowicz J., Szymkiewicz R. (1989), A comparison of the solution effectiveness of the Saint-Venant equations with finite element method and finite difference method, Archives of Hydro-Engineering and Environmental Mechanics, Vol. 36, No. 3–4, 199–210 (in Polish).
  • 7. Koshizuka S., Tamako H., Oka Y. (1995), A Particle Method for Incompressible Viscous Flow with Fluid Fragmentation, Computational Fluid Dynamics Journal, Vol. 4, No. 1, 29–46.
  • 8. LeVeque R. J. (2002), Finite Volume Method for Hyperbolic Problems, Cambridge University Press, New York.
  • 9. Maronnier V., Picasso M., Rappaz J. (1999), Numerical simulation of free surface flows, Journal of Computational Physics, Vol. 155, 439–455.
  • 10. Mohapatra P. K., Eswaran V., Bhallamudi S. M. (1999), Two-dimensional analysis of dam-break flow in vertical plane, Journal of Hydraulic Engineering, Vol. 25, No. 2, 183–192.
  • 11. Morris M.W. (editor) (2000), Final Report – Concerted Action on Dam-break Modelling, HRWallingford Ltd., Wallingford.
  • 12. Potter D. (1982), Computational Physics, PWN, Warsaw (in Polish).
  • 13. Remson I., Hornberger G., Molz F. (1971), Numerical Methods in Subsurface Hydrology, Wiley and Sons, New York.
  • 14. Ritter A. (1892), Die Fortplanzung der Wasserwellen, Zeitschrift des Vereines Deutscher Ingeniere, 33(36), 947–954.
  • 15. Roe P. L. (1981), Approximate Riemann solvers, parameters vectors and difference schemes, Journal of Computational Physics, Vol. 43, 357–372.
  • 16. Sawicki J. (1998), Free Surface Flows, PWN, Warsaw (in Polish).
  • 17. Szydłowski M. (editor) (2003), Mathematical Modelling of Dam-break Hydraulic Effects, Monographs of Water Management Committee of Polish Academy of Science, Vol. 22, Warsaw (in Polish).
  • 18. Szydłowski M. (2004), Implicit versus explicit finite volume schemes for extreme, free surface water flow modelling, Archives of Hydro-Engineering and Environmental Mechanics, Vol. 51, No. 3, 287–303.
  • 19. Szymkiewicz R. (2000), Mathematical Modelling of Open Channel Flows, PWN, Warsaw (in Polish).
  • 20. Toro E. F. (1997), Riemann Solvers and Numerical Methods for Fluid Dynamics, Springer-Verlag, Berlin.
  • 21. Welch J. E., Harlow F. H., Shannon J. P., Daly B. J. (1966), The MAC Method, Technical Report La-3425, Los Alamos National Laboratory.
  • 22. Zima P. (2005), The numerical simulation of two-dimensional vertical incompressible viscous flow, [in:] Proceedings of Water Management and Hydraulic Engineering Ninth International Symposium, Ottenstein-Austria, Sept. 4–7 2005, eds. H. P. Nachtnebel, C. J. Jugovic, Vienna, BOKU, Univ. Natural Resour. a. Appl. Sci., 455–462.
  • 23. Zoppou C., Roberts S. (2003), Explicit schemes for dam-break simulations, Journal of Hydraulic Engineering, Vol. 129, No. 1, 11–34.
  • 24. Zwart P. J., Raithby G. D., Raw M. J. (1999), The integrated space-time finite volume method and its application to moving boundary problems, Journal of Computational Physics, Vol. 154, 497–519.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT8-0004-0024
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.