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Abstract
The paper describes some turbulence measurements carried out in an experimental com-
pound channel with flood plains. The surface of the main channel bed was smooth and made
of concrete, whereas the floodplains and sloping banks were covered by cement mortar com-
posed with terrazzo. Instantaneous velocities were measured be means of a three-component
acoustic Doppler velocity meter (ADV) manufactured by Sontek Inc. This article presents
the results of measurements of primary velocity, the distribution of turbulent intensities,
Reynolds stresses, autocorrelation functions, turbulent scales, as well as the energy spectra.
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1. Introduction

An important feature of most rivers in their midstream or downstream reach is
a compound cross-section, consisting of a deep main channel, usually with inclined
banks, and shallow floodplains, which are often rough due to vegetation. In these
channels flood conditions lead to a complex, 3D flow situation with intensive mass
and momentum exchange between the main channel and the floodplains. This pro-
duces a transverse shear layer influencing the flow in both the main channel and
the floodplains. The momentum transfer takes place not only by the bed generated
turbulence, but also by free shear turbulence and secondary currents. It is now well
established that the proper evaluation of this so-called “interaction mechanism”
is crucial for reliable prediction of the flow field and related processes, such as
flooding, spreading of pollutants, and transport of solids due to sedimentation and
erosion. The structure of turbulence in such flows is extremely complex. To investi-
gate this structure many experimental works have been performed (see e.g. Knight,
Shiono 1990, 1996, Arnold 1989, Knight et al 1994, Shiono, Knight 1990, 1991,
Rhodes and Knight 1994, Tominaga et al 1989).
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The application of mathematical turbulence models for predicting the 3D flow
in compound channels requires high quality data for validation purposes. All math-
ematical turbulence models introduce a number of empirical constants to describe
Reynolds stresses, eddy viscosity, mixing length and other parameters (Naot and
Nezu 1993, Nezu at al 1999, Czernuszenko and Rylov 2002, Prooijen and Uijttewaal
2005). To determine all these parameters, specially designed experimental works
are greatly needed. In some papers the problem of developing a good conceptual
model of the interaction between the main channel and floodplain is considered.
One dominant feature, are the vortices with vertical axes which develop in any
highly sheared zone between two co-flowing streams at different velocities. These
vortices are responsible for convecting high momentum fluid from the main channel
onto the floodplain. The second feature is the longitudinal vorticity causing pertur-
bations in any lateral distribution of boundary shear stress. Also, secondary flows
are the reason for distraction of the distribution of the stresses. Secondary flows are
usually directed inwards to channel corners and outwards at re-entrance corners.
All these features indicate the three dimensional nature of all the vorticies and also
the complexity of the turbulence in the interaction zone. Since they are still not yet
fully understood, reliable measurements are very important and needed.

There are also other issues calling for special attention. One of them is the
logarithmic velocity law, which is not necessarily valid in the complex region where
the interaction process between the river and its floodplain is most intense. One
would expect the logarithmic velocity distribution at the channel centerline where
the flow is essentially two-dimensional. At other locations, notably near the corner
region in trapezoidal channels and at the main channel/floodplains interface in
overbank flow, the flow is clearly 3D in nature and deviations from logarithmic
law are expected. Also, the vertical and lateral distributions of Reynolds stresses
in the compound channel are the main issues to consider and a very important
question arises. It is of crucial importance whether the vertical distribution of the
Reynolds stress term τzx is linear or not. It is well known, that the positive answer
to this question is only in the case of 2D flow. Then, the vertical distribution is
approximately linear at the centerline of the channel, but not in the vicinity of the
main river bank. Also, it is interesting to know how the Reynolds stress term τyx is
distributed in the lateral direction. It is obvious, that at the channel centerline this
stress should become trivial.

The scope of this paper is to provide results of comprehensive measurements
of main turbulence parameters in steady turbulent flow in a trapezoidal straight
channel with the symmetrical, complex cross-section with inclined side-walls. It is
a continuation and an extension of the study published in Rowiński et al (2002) in
which a similar experimental program, with use of 1D velocity meter, was fulfilled.
This time the full three-dimensional velocity field is under consideration due to
the use of 3D Acoustic Doppler Velocity (ADV) meter. The case with a smooth
main channel and rough floodplains is considered in the study. A separate measuring
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campaign with vegetated floodplains has been analyzed in Rowiński and Mazurczyk
(2006).

2. Theoretical Considerations

In principle, a detailed description of the flow structure in a compound channel re-
quires three-dimensional analyses, but the classical theory of the two-dimensional
mean flows using the statistical theory of turbulence, remains a fundamental
base allowing to obtain approximate results explaining basic phenomena. The
two-dimensional, steady and uniform turbulent flow in an open channel is governed
by the Reynolds-averaged Navier-Stokes equations. The equation for the longitudinal
streamwise component of momentum of a fluid element may be combined with the
continuity equation to give (Shiono and Knight 1991):

∂UV
∂y
+
∂UW
∂z
= g sin θ +

1
ρ

(
∂τyx

∂y
+
∂τzx

∂z

)
, (1)

where x, y, z are streamwise, lateral and normal directions respectively; U, V , W
are temporal mean velocity components; ρ is the density of water, θ is the bed
slope, g is the gravitational acceleration, τi j is the shear stress in the j-th direction
( j = x) on the plane perpendicular to the i-th direction (i = y or i = z). Further in
the paper quantities u, v, w appear and they denote turbulent velocity components
corresponding to x, y and z.

To define the vertical distribution of the local shear stress on any horizontal
plane in the x-direction, Eq. (1) should be integrated from any point z above the
channel bed to the water surface assuming W = 0 and τzx = 0 at z = h. It gives

τzx = ρg(h − z) sin θ +

h∫
z

∂τyx

∂y
dz −

h∫
z

∂ρUV
∂y

dz + ρUW . (2)

The distribution of τzx is linear over the depth, only in the absence of lateral
shear and secondary flows, i.e. τzx varies from 0 to ρgh sin θ as z varies from h to
0 (from the free surface towards the channel bed). That linear shear stress distri-
bution together with Prandtl’s model lead to the well-known logarithmic velocity
distribution law in the form:

U
U∗
=

1
κ

ln
z
k
+ B, where

{
k = ν/U∗ , B ≡ Bs = 5.5 for smooth channels
k ≡ ks , B ≡ Br = 8.5 for rough channels (3)

where:

U∗ – friction velocity,
κ – Karman constant,
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z – distance from the wall,
ν – molecular (kinematic) viscosity,
B – universal constant and
ks – sand roughness.

2.1. Turbulence Velocities

Turbulent flow velocity at any point is by definition a random variable. The behav-
ior of this velocity can be described by probability density function, p(u). Velocity
measurements provide a time series of values recorded at time instants at regular
intervals ∆t. We restrict our considerations to stationary and ergodic random pro-
cesses. For this situation, the probability density function (pdf) is invariant with
respect to time and only one sample record over a sufficiently long time interval is
needed to define the pdf and relevant statistical characteristics. Thus, all information
about the turbulent velocity at a point can be obtained from one time series.

The pdf and the statistical moments in this paper depend only on the magnitudes
of the velocities measured at one point in the flow and not on the sequence in
which those values occur. On the contrary, relevant correlation functions and energy
spectra depend on the sequence in which those magnitudes occur. Reynolds stresses
depend on the simultaneously recorded velocities in two directions at a point, but
similarly to the pdf function they are independent from the sequence of values.

An analytical expression for the pdf for turbulent flows is not easy to establish.
Nevertheless, for most practical (engineering) purposes, the function can be char-
acterized by statistical moments of different orders that can be obtained relatively
easily from experiments. A statistical moment of n-th order for a stationary, ergodic
process, for any random variable (ξ) can be defined by

E[ξn] ≡ ξn = lim
T→∞

1
T

t0+T∫
t0

ξndt, (4)

where E[ ] represents the expected value, ξ is the random variable, n = 1, 2, 3, . . . ;
the overbar indicates time-averaging, t = t0 at the beginning of the data series being
analyzed, and T is the duration of the data time series.

The first central moment of the turbulent velocity is zero because the average
turbulent velocity is zero. The second moment represents the mean-square departure
from the time-averaged velocity and is called the variance (σ2) or mean square. The
second, the third and fourth moments are often replaced by their non-dimensional
forms, namely

σx

U∗
=

√
u2

U∗
, (5)
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Sx =
u3(

u2
)3/2 , (6)

Kx =
u4(
u2

)2 − 3. (7)

These non-dimensional parameters are called relative turbulence intensity
(Eq. 5), skewness or excess (Sx) and flatness factor or kurtosis (Kx). Above, for
simplicity, they are defined only for the longitudinal component. These expressions
have specific physical interpretations. The skewness is related to the asymmetry
in the distribution of turbulent velocities. In case of a Gaussian and any other
symmetrical distributions, Sx assumes zero value. Sx is positive when large positive
values of instantaneous point velocities u are more frequent than large negative
values. The excess is related to the flatness of the distribution. For reference, Kx
= 0 for Gaussian distribution when the definition in Eq. (7) is used. Larger values
of Kx imply that p(u) has a narrower peak and broader tails than the Gaussian
distribution with the same standard deviation. It means that both very small and
very large values of the random variable are more probable than in the case of
a normal distribution.

2.2. Autocorrelation Function and Energy Spectrum

Now, we may define an Eulerian autocorrelation coefficient (rE) for the values of
a given longitudinal velocity component at a fixed point in the flow field, but at
two different times t and t′. Since we are working with stationary variables, rE can
depend only on the time shift τ, which is equal to t′ − t, and it must be a symmetrical
function of τ. Using Eq. (4) for time averaging, rE for the longitudinal velocity is
defined by

rE(τ) =
RE(τ)

u2
, (8)

where RE(τ) = u(t)u(t + τ).
The maximum value is rE(0) = 1, while rE approaches zero for large τ, but

frequently decreasing oscillations are obtained as rE is approaching zero. The au-
tocorrelation coefficient can be used to define an Eulerian integral time scale (TE)
as

TE =

∞∫
0

rE(τ)dτ. (9)
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TE may be considered as an indication of the time interval over which the
longitudinal velocity component at a point is correlated with itself.

Let us consider a stationary and homogeneous turbulent flow with a small
relative intensity. Then the hypothesis of “frozen turbulence” is valid and an integral
length scale (Lx) can be calculated from the Eulerian time scale (e.g. Hinze 1975):

Lx = UTE . (10)

The length scale defined by Eq. (10) is to a certain extent a measure of the
correlation distance between the longitudinal velocities at two points of the flow
field and it is called a macroscale of turbulence.

Introducing the energy or power density spectrum, we assume that the ve-
locity fluctuation u(t) can be represented by the Fourier integral. Because the
auto-correlation function RE(t) of a stationary random function is an even function
of t, and the power spectrum E( f ) and the function RE(t) are the Fourier cosine
transforms, hence we may write

E( f ) = 4

∞∫
0

RE(t) cos 2π f t dt, (11)

R(t) =

∞∫
0

E( f ) cos 2π f t d f . (12)

Function E( f ) defines the kinetic energy associated with the infinitesimal range
of frequencies ( f , f + d f ). For flows in open channels, it is not a homogenous
function. Its maximum values occur at the lower frequencies and the minimum one
at the higher frequencies.

Kolmogoroff’s similarity theory postulates that in a turbulent motion, at suf-
ficiently high Reynolds numbers, there is a range of high frequencies where the
turbulence is statistically in equilibrium and uniquely determined by the mean rate
of energy dissipation per unit volume, ε, and the kinetic viscosity of the fluid, ν.
This range of frequencies is called the universal, equilibrium range. If the equilib-
rium range is sufficiently large, it comprises a subrange (inertial subrange) where
the dissipation is negligibly small compared with the flux of energy transferred by
inertial effects. In such subrange the energy spectrum of turbulence can be expressed
in the form which is called Kolmogoroff’s spectrum law.

E( f ) =
(
2π
U

)−2/3

A ε2/3 f −5/3. (13)
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3. Experimental Equipment and Methodology

The experiments were carried out in a concrete flume, 16 m long and 2.10 m wide
with symmetrically complex trapezoidal cross-section. The bed slope of the channel
was 0.5‰. A row of PCV pipes was installed in the initial channel reach to subside
the stream. One cross-section in the middle of the flume was selected for velocity
measurements (Fig. 1). It consisted of 23 verticals – six on each floodplain and
eleven in the main channel.

Fig. 1. Scheme of the experimental cross-section with the arrangement of measuring
verticals

Water levels in the main channel and on the floodplains, all three compo-
nents of point velocities, water temperature and water discharge were measured
during the course of the experiment. Water depth in the channel was recorded with
use of a needle level gauge. Instantaneous velocities were measured with use of
a three-component acoustic Doppler velocity meter (ADV) manufactured by Son-
tek Inc. The acoustic sensor was mounted on a rigid stem attached to a specially
designed trolley allowing for its detailed positioning. ADV works on pulse-to-pulse
coherent Doppler techniques in relatively high temporal resolution (Lohrmann et
al 1994). ADV proved to yield a good description of the turbulence characteristics
when certain conditions related to the flow itself and the configuration of the in-
strument are satisfied. The measurements were conducted with maximum frequency
25 Hz in the velocity range of 0 to 1.0 m/s with the accuracy of 0.25 cm/s. Sampling
volume was equal to 0.1 cm3. Buffin-Bélanger and Roy (2005) report, that for the
most turbulent statistics sufficient record length for the measurements is 60–90 s.
In cases of our experiments even longer time series (120–360 s) were recorded to
provide reliability of data and constancy of higher order velocity moments. Both
down-looking sensor orientation and side-looking probes (close to the water sur-
face, less than 6 cm in order to avoid flow interference) were utilized during the
measurements.

Water discharges were recorded with use of a measuring circular overfall – 540
mm in diameter. During the experiment Q = 95.20 l/s. Water surface slope was
measured by recording the pressure differences among piezometers located along
the centerline of the channel bed at the distances 4 and 12 m from the channel
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entrance. The surface of the main channel bed was smooth (Manning roughness
coefficient n = 0.011 m−1/3s) and made of concrete whereas the floodplains and
sloping banks were covered by cement mortar composed with terrazzo with grains
of 0.5 to 1 cm in diameter (n = 0.018 m1/3s). The water depth in the main channel
was kept at the level of H = 28.3 cm and on the floodplains h = 12.3 cm. The
main channel width was equal to 28 cm and the floodplains’ width was 60 cm. The
sloping banks were inclined at the angle 1:1.

4. Analysis of Experimental Data

Mean velocity distributions in the main channel (Fig. 2; verticals 37–41) coincide
with the logarithmic profile over a smooth bed with universal value of Karman
constant (0.41) and constant B = 5.5. That good agreement is observed up to the
water depth z/h = 0.23, e.g. to z+ = zU∗/ν = 1000. Above that value the measured
velocities are larger than the ones obtained from the log-law. The increases in
those values are revealed in the increase of constant B in Eq. 3. Karman value has
not been treated as a priori given and it has been computed from the logarithmic
profile. Log-profile allowed also for obtaining the value of shear velocity as well as
the equivalent sand roughness. Bed shear stresses were obtained by extrapolation
taking into account the linear distribution of Reynolds stresses. The computational
results are summarized in Table 1 and Table 2.

Fig. 2. Mean velocity distribution in the main channel

The mean velocity distributions are consistent with the interpretation of Eq. 2
– for negligible values of vertical and transverse velocities V and W and negligible
values of transverse Reynolds stresses, the stresses τzx vary linearly with the distance
from the bed which leads to logarithmic profile. As stated above, similar computa-
tions were made for the flow above the sloping banks (verticals 32, 34, 44 and 46)
and it is observed that flow in that area is three-dimensional. In spite of relatively
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Table 1. Karman constant, shear stress at the bed level (τxz/ρ = −uw ) and shear velocities
in the main channel

Verticals 37 38 39 40 41
Karman constant, κ 0.41 0.41 0.42 0.40 0.40

– uw at the bed [(m/s)2] 2.06 10−4 2.69 10−4 2.79 10−4 2.38 10−4 2.21 10−4

(U∗)2 [(m/s)2] 2.56 10−4 2.56 10−4 2.25 10−4 2.56 10−4 2.25 10−4

Table 2. Karman constant κ and equivalent sand roughness on floodplains evaluated on the
basis of a logarithmic profile

Left floodplain Right floodplain
Verticals 13 19 25 30 48 53 59 65

Karman constant κ 0.41 0.4 0.41 0.41 0.42 0.40 0.40 0.40
equivalent sand roughness ks [mm] 2.1 0.9 0.5 1.8 1.5 2.6 2.9 3.2

Fig. 3. Mean velocities distributions above sloping banks in the main channel

large dispersion of measuring values, they were approximated by a log-profile with
Karman constant and B = 0.5 (Fig. 3).

In case of both floodplains a big scatter of measured values of velocities was
also observed, but the values of Karman constant oscillate close to the value of
0.41 (Table 2). Since the floodplains are characterized by rough bed surface, the
equivalent sand roughness was obtained taking the friction velocity from Table 1
and B = 8.5. It is unfortunately difficult to evaluate the value of the bed shear stress
and the equivalent sand roughness in case of the flow above the terminal (left and
right) sloping banks. When using similar computational technique like for the main
channel, large scatter of results was observed and the only quantity assuming similar
values in each case was Karman constant.
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5. Higher Moments

5.1. Turbulent Intensity

Phenomenological universal functions for turbulence intensities were proposed by
Nezu and Nakagawa (1993) in the form√

u2
i

U∗
≡

u′i
U∗
= Di exp

(
−Ck
y

h

)
, (14)

where Di and Ck are empirical constants, i ≡ x, y, z, and u′1 = u′, u′2 = v
′, u′3 = w

′.
Based on the best fit procedure for all points located within the range 0.1 <

z/h < 0.6, values of constants Di and Ck in Eq. (14) at the center of the main
channel (vertical 39) for all three components of velocity were obtained as Dx =
2.29, Dy = 1.47, Dz = 1.07. In the computations it was assumed that Ck = 1, as
was suggested by Nezu and Nakagawa (1993), for two-dimensional flows. In fact,
the values of Ck were very close to unity, especially for transverse components. In
case of the verticals located a large distance from the center of the cross-section
(verticals 37 and 38) the values of those coefficients are scattered. The lowest
coefficients occurred at the corner between the main channel and the inclined wall
(vertical 36). One can conclude, that they are attenuated by the inclined wall. For
the next two verticals located over this wall these coefficients gradually increase,
so that for vertical 32 these coefficients reached the maximum values of 2.94, 2.07
and 1.29, respectively (see Table 3).

Table 3. Coefficients of Eq. (1) for verticals in main channels (37–39) and for inclined wall
(32–36)

Main channel and sloping bank

Vertical Du Ck Dv Ck Dw Ck

39 2.29
1

1.47
1

1.07
138 2.41 1.46 1.08

37 2.46 1.55 1.14
36 1.89 0.99 1.11 0.73 0.78 0.58
34 2.64 0.68 1.47 0.48 1.25 0.48
32 2.94 0.28 2.07 0.90 1.29 0.22

The effect of a free surface exerted upon the turbulent intensities is easily
observable for the longitudinal and lateral components starting from the relative
depth z/h = 0.68. The values of those intensities are even larger than one could
expect. The most noticeable feature is that the vertical intensities decrease rapidly
towards the bottom of the channel (see Fig. 4) causing the damping of the vertical
fluctuations. Probably, a similar effect occurs near the free surface, but at distances
larger than z/h > 0.75, in the zone not registered during our measurements (Fig. 4).
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Fig. 4. Three components of turbulence intensities in the main channel (for notation see
Eq. 14)

Some differences for the verticals located over the inclined wall (interaction
zone) have been observed, namely for two verticals P32 and P34 for which the
turbulence intensities are significantly higher than those in the main channel. This
profile of the turbulence intensity is strongly influenced by the inclined wall. Co-
efficient Du varies from the lowest value at the vertical 36 to the highest one at the
vertical 32 for all components of the intensity. In the case of interactive zone the
parameter Ck is generally less than unity (see Table 3).

5.2. Skewness

The typical vertical distributions of skewness for longitudinal components of ve-
locity in the main channel (verticals 37–39) are shown in Fig. 5. Near the bottom
its values are close to zero, and at z/h = 0.4 it reaches the lowest negative value
equal to −0.5. Further, together with the increase of z/h until the level z/h = 0.6,
the skewness increases to zero and then till z/h = 0.8 the skewness remains almost
constant. The values of skewness for flow over the inclined wall (verticals 34–36)
start from almost zero near the bed and next they decrease to −0.5 at z/h = 0.2–0.4
and above this level they remain negative. The skewness calculated for lateral com-
ponent of turbulent velocity v is very small and close to zero in the main channel
and it is relatively small and positive above the left inclined wall and the opposite
above the right wall.

5.3. Kurtosis

The vertical distributions of kurtosis of longitudinal turbulent velocities in the main
channel (verticals 37–39) and above the inclined wall (verticals 32–36) are presented
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Fig. 5. Vertical distribution of the longitudinal component of the skewness coefficient in
the main channel (verticals 37–39) and above the inclined wall (verticals 32–36)

Fig. 6. The vertical distribution of kurtosis of the longitudinal velocity in the main channel
(verticals 37–39) and above the inclined wall (vertical 32–36)

in Fig. 6. In the main channel, the kurtosis increases from the negative values near
the bottom (z/h < 0.3) to its maximum values equal to +0.5 at the level z/h = 0.4,
and it again decreases to zero at the level of about z/h = 0.6 for vertical 39 and
0.2 for vertical 37 (see Fig. 6). Values of kurtosis for the interactive zone are
scattered and it is difficult to find any regularity. The kurtosis of other components
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of turbulent velocities are distributed along the depth similar to the longitudinal
ones, but their values in the vertical direction are larger than in the lateral direction.

5.4. Reynolds Stresses

Turbulent shear stresses τzx in the main channel (Fig. 7, verticals 37–39) linearly
decrease from relatively large values close to the channel bed to the zero value
at the level ca. z/h = 0.7. They remain constant until the level z/h = 0.8 where last
measurements were made. Those trivial values of turbulent shear stresses result from
the two-stage geometry of the cross-section causing the generation of additional
non-vanishing stresses caused by secondary currents counterbalancing the stresses
due to gravity (Eq. 2). At the same time one may observe almost zero values of shear
stresses τyx in the main channel (Fig. 8). The vertical variations of shear stresses
τzx above the inclined walls are rather chaotic, the fact that might be explained by
studying Eq. (2). Due to that equation, the disturbances in linear changes of the
stresses above the sloping banks are caused by non-vanishing variations of τyx as
well as non-zero secondary currents. It seems, however, that the influence of those
secondary currents is somewhat lower as was suggested by Knight, Shiono (1990).
Fig. 7 presents the variations of the shear stresses τzx above the sloping banks –
those stresses vanish at various levels, namely at the level z/h = 0.5 at the vertical
36 and close to the water surface at the vertical 32. It means that the influence of
the inclination of the channel wall decreases together with the increase in distance
from the channel axis.

Fig. 7. Vertical distribution of the Reynolds stresses (τzx/ρ), in the main channel (H =
0.283 m)

The lateral variation of the Reynolds stresses τyx at given elevation, z, above
the local bed is shown in Fig. 8. The stresses τyx near the channel centerline are
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Fig. 8. Lateral distribution of the Reynolds stress, τyx , at different levels and water depth
H = 0.283 m

close to zero, and as the distance from the centerline increases, these stresses also
increase. The maximum stresses occur close to the beginning of the floodplain (see
Fig. 8). Such result has also been obtained by Arnold and Rouve (1989) and Knight
and Shiono (1990).

6. Autocorrelation, Scales and Spectral Density Function

The form of autocorrelation functions of the longitudinal velocities is similar at each
measuring point; it starts from unity for t = 0, then its values decrease and from
a certain point they oscillate in an irregular way close to zero. Typical graphs of rE(t)
can easily be found in literature (e.g. Nezu and Nakagawa 1993). The maximum
values of Eulerian integral time scale, TE , defined by Eq. (10) and calculated for
the channel centerline, range from 0.3 s till 0.7 s. Taking into account the Taylor
hypothesis of “frozen turbulence” the evaluated normalized integral scales L/h are
in the range from 0.2 to 1. The vertical profiles of the Eulerian integral length scale
normalized by the local depth for main channel are displayed in Fig. 9. It is obvious
that those scales grow from the lowest values at the points close to the bed to their
maximum values at water surface.

The energy or power density spectrum E( f ), defined by Eq. (11), for three
different distances from the bed (z = 1 cm, 15 cm and 19 cm) at the vertical located
in the channel centerline are presented in Fig. 10. The calculated spectrum may have
a very large variance so that the spectrum has very large oscillations. To decrease
the variance, the frequency smoothing is usually applied using spectral windows.
In this paper, the Tukey window is used. This window has a weighting function
for the averaging that is a cosine function with a half wavelength equal to the
width of the window and with the maximum weighting being at the center of the
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Fig. 9. Eulerian integral longitudinal length scale in the main channel

Fig. 10. Spectral distribution in channel centerline at z = 1 cm
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window. The width of the window was chosen by trial and error method to be 7
seconds and it allowed to minimize the fluctuations in the spectra without loosing
the essential aspects of the shape of the spectral distributions. In our analysis, the
relative shape of the spectrum was more important than the actual values, since
only the shape was needed to identify the Kolmogorov inertial subrange and other
frequency subranges.

Some other researchers (see for example Nikora 1999) analyze additionally
a subrange of frequencies where the spectrum decays as G( f ) ∼ f −1. It happens in
shear flows without solid boundaries and this subrange is situated in the equilibrium
range of frequencies close to the energy-containing eddies. It may be assumed that
in this subrange the energy dissipation is expressed as ε(k) ∼ u3

∗k, where k is the
longitudinal wave number in the direction of the mean flow, where homogeneity
applies.

The inertial subrange within which “–5/3 power law” applies as well as “–1”
subrange of frequencies are detected in the channel centerline (see Figures 10–12).
At the distance 1 cm from the channel bottom the inertial subrange is located at
frequencies from 0.9 Hz to 3 Hz, at 15 cm from the bottom in the range from
0.65 Hz to 1.5 Hz, and at 19 cm it ranges from 0.55 Hz to 1.2 Hz. It is easy to
see that the inertial subrange begins at 0.9 Hz at the point 1 cm from the bed and
for larger distances from the bed that subrange begins at lower frequencies. For
localization of the “–1” subrange see Figures 10–12. These figures show that this
subrange becomes shorter as the distance from the bed increases.

Fig. 11. Spectral distribution in channel centerline at z = 15 cm
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Fig. 12. Spectral distribution in channel centerline at z = 19 cm

When analyzing the above figures it is possible to identify the characteristic
scale of large horizontal motion playing an important role in mixing and dispersion
in shallow water flows (see Prooijen, Uijttewall 2005). This motion reaches about
1 m at the distance of 19 cm above the channel bed (it is seen at f = 0.4 s−1),
and the size about 0.4 m (corresponding to frequency 1 Hz) at 15 cm above the
channel bed (the mean velocity for these two distances are about 0.4 m/s). Also, it
is possible to find out some details of this motion, analyzing the smoothing spectra
with narrow windows, of the 5 s or less.

7. Conclusions

The following conclusions may be drawn from the measurements of instantaneous
velocities in steady turbulent flow in two-stage trapezoidal channel.

1. The vertical distributions of primary velocity are generally logarithmic in the
main channel, where the lateral shear stresses τyx, as well as the transversal
components of mean velocities are low.

2. The vertical distributions of turbulent intensity follow standard, exponential form
in the main channel. The appropriate empirical coefficients deviate from those
for 2D uniform flow, because the inclined wall affects the intensities. The ratios
between the longitudinal, lateral and vertical intensities for the channel centerline
are 2.3 : 1.5 : 1.0, respectively.

3. The spatial distributions of primary velocity, turbulent intensity and Reynolds
stresses over the inclined rough wall are different from those in the main channel.
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Primary velocities almost follow the logarithmic law, but with universal constant
B much lower than in the main channel. The wall suppresses the turbulent
intensities and they vary from the lowest values at the vertical 36 (the corner
between the main channel and inclined wall) to the highest ones at the vertical
32. The vertical distributions of Reynolds stresses, τzx, over the inclined wall
are definitely not linear. Reynolds stresses τyx assume the largest values close
to the corner between the main channel and the floodplain.

4. The values of skewness and kurtosis clearly indicate deviation from Gaussian
distribution of fluctuating, longitudinal velocities. The vertical distributions of
skewness and kurtosis coefficients show that the skewness in the main channel
(verticals 39 and 37) reaches the lowest negative value equal to −0.5 at z/h = 0.4.
On the contrary, the kurtosis for the main channel takes its largest positive values
at z/h = 0.4. The skewness calculated for lateral component of turbulent velocity
is very small and close to zero in the main channel and it is relatively small
above the inclined walls.

5. Eulerian integral length scale for the main channel grows from the lowest values
at points close to the bed to its maximum value at the water surface.

6. The inertial subrange of energy density spectrum for the main channel is detected
in the channel centerline. Left border of the inertial subrange, i.e., the lowest
frequency of this subrange, increases from the water surface towards the channel
bed. The band of frequencies for inertial subrange is rather wide near the bed
and becomes narrower when approaching the water surface.
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