PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Experimental investigations of strain localization in concrete using Digital Image Correlation (DIC) technique

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents results of experimental investigations of strain localization in concrete using a non-destructive method called Digital Image Correlation (DIC) technique. This technique measures surface displacements from digital images. The model tests were carried out with notched concrete specimens under three-point bending. Three different beam sizes and two different concrete mixes were used. During experiments, load--deflection curves and evolution of fracture process zone were determined. The measured size effect in strength was compared with the deterministic size effect law by Bazant (1984) and experimental results by Le Bellégo et al (2003).
Twórcy
autor
autor
  • Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, Gdańsk-Wrzeszcz, ul. Narutowicza 11/12, jkozicki@pg.gda.pl
Bibliografia
  • 1. Bazant Z. P. (1984) Size effect in blunt fracture: concrete, rock, metal, J. Engng. Mech. ASCE, 110, 518–535.
  • 2. Bazant Z. P. (2003) Scaling of Structural Strength, Hermes-Penton, London.
  • 3. Bazant Z. P., Jirasek M. (2002) Nonlocal integral formulations of plasticity and damage: survey of progress, J. Engng. Mech., 128 (11), 1119–1149.
  • 4. Bazant Z. P., Oh B. H. (1983) Crack band theory for fracture of concrete, Material Structures, RILEM, 16, 155–177.
  • 5. Bazant Z. P., Planas J. (1998) Fracture and Size Effect in Concrete and other Quasi-brittle Materials, CRC Press, Boca Raton.
  • 6. Bhandari A. R., Inoue J. (2005) Experimental study of strain rates effects on strain localization characteristics of soft rocks, Journal of the Mechanics and Physics of Solids, 45 (1), 125–140.
  • 7. Bobinski J., Tejchman J. (2006) Modeling of strain localization in quasi-brittle materials with a coupled elasto-plastic-damage model, J. Theoretical and Applied Mechanics, 4, 44.
  • 8. Dersch H. (1999) Testing Interpolator Quality, http://www.path.unimelb.edu.au/%7Edersch/interpolator/interpolator.html.
  • 9. Eckert W., Nicholas J. M., Gray T., Hutter K. (2003) Particle Image Velocimetry for granular avalanches, Lecture Notes in Applied and Computational Mechanics: Dynamic Response of Granular Materials under Large and Catastrophic Deformations (eds. Hutter K., Kirchner N.), 11, Springer, 195–219.
  • 10. Ferrara I., di Prisco M. (2001) Mode and fracture behaviour in concrete: nonlocal damage modeling, ASCE Journal of Engineering Mechanics, 127 (7) 678–692.
  • 11. Geers M., Peijs T., Brekelmans W., de Borst R. (1996) Experimental monitoring of strain localization and failure behaviour of composite materials, Compos. Sci. Technol., 56, 1283–1290.
  • 12. Le Bell´ego C., Dube J. F., Pijaudier-Cabot G., Gerard B. (2003) Calibration of nonlocal damage model from size effect tests, European Journal of Mechanics A/Solids, 22, 33–46.
  • 13. Mahnken R., Kuhl E. (1999) Parameter identification of gradient enhanced damage models, European Journal of Mechanics A/Solids, 18, 819–835.
  • 14. Michalowski R. R., Shi L. (2003) Deformation patterns of reinforced foundation sand at failure, Journal of Geotechnical and Geoenvironmental Engineering, 129 (6), 439–449.
  • 15. Nübel K. (2002) Experimental and Numerical Investigation of Shear Localization in Granular Materials, Publication Series of the Institute of Soil and Rock Mechanics, University of Karlsruhe.
  • 16. Pijaudier-Cabot G., Bazant Z. P. (1987) Nonlocal damage theory, ASCE Journal of Engineering Mechanics, 113, 1512–1533.
  • 17. Pijaudier-Cabot G., Haidar K., Dube J. F. (2004) Non-local damage model with evolving internal length, Int. J. Num. and Anal. Meths. in Geomech., 28, 633–652.
  • 18. Raffel M.,Willert C., Kompenhaus J. (1998) Particle Image Velocimetry, Springer, Berlin–Heidelberg.
  • 19. Rechenmacher A. L. (2006) Grain-scale processes governing shear band initiation and evolution in sands, Journal of the Mechanics and Physics of Solids, 54, 22–45.
  • 20. Słominski C., Niedostatkiewicz M., Tejchman J. (2006) Deformation measurements in granular bodies using a Particle Image Velocimetry technique, Archives of Hydro-Engineering and Environmental Mechanics, 53 (1), 71–94.
  • 21. Słominski C., Niedostatkiewicz M., Tejchman J. (2007) Application of particle image velocimetry (PIV) for deformation measurement during granular silo flow, Powder Technology, 173, 1–18.
  • 22. van Vliet M. R. A., van Mier J. G.. M. (1996) Experimental investigation of concrete fracture under uniaxial compression, Mechanics of Cohesive-Frictional Materials, 1, 115–127.
  • 23. White D. J., Take W. A., Bolton M. D. (2003) Soil deformation measurement using particle image velocimetry (PIV) and photogrammetry, G´eotechnique, 53 (7), 619–631.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT8-0004-0011
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.