
ANNUAL OF NAVIGATION 11/2006

73

ALEKSANDER NOWAK, CEZARY SPECHT
Naval University of Gdynia

SNAPSHOT RAIM ALGORITHMS AVAILABILITY
IN URBAN AREAS

ABSTRACT

This paper presents some theoretical considerations concerned usage of Snapshot RAIM
algorithms in city navigation. Influence of urban areas on RAIM Availability and Approxi-
mate Radial-Error Protected (ARP) is taken into consideration. Some results of numerical
experiments are presented, too.

INTRODUCTION

Navigation system integrity refers to the ability of the system to provide
timely warnings to users when the system should not be used for navigation. The
basic Global Positioning System (GPS) provides integrity information to the user via
the navigation message, but this may not be timely enough for some applications.
Therefore, additional means of providing integrity are necessary. Two different
approaches can be considered. One of this is the receiver autonomous method, now
referred to simply as RAIM (receiver autonomous integrity monitoring). A variety
of RAIM schames have been proposed and all are based on some kind of self-
consistency check among the available measurements. Of course, there must be
some redundancy of information in order for RAIM to be effective. The other
approach to providing an independent assurance of integrity is to have a network of
ground monitoring stations whose primary purpose is to monitor the health of the
GPS satellites [1]. Because of many obstructions which can occur in urban areas
such as buildings and trees it is hardly possible to construct proper network of ground
station, thus only the first mentioned approach can be implemented. Initially RAIM
was considered as a part of air navigation. Therefore, all proposed algorithms assu-
me that the process of navigation takes place in an open area (without obstructions)
and only one satellite at time will be transmitting an unpredicted erroneous signal.
Because more often and often GPS receivers are used as a part of land navigation
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systems it seems to be necessary to consider RAIM in aspect of city navigation.
Some theoretical considerations and numeric simulations of RAIM availability in
urban areas are presented in next sections.

THEORY OF RECEIVER AUTONOMOUS INTEGRITY MONITORING

A variety of RAIM schemes have been proposed in the literature. They all
based on the same principle of carrying out a self-consistency check amongst redun-
dant measurements using statistical decision theory. Two hypothesis-tests are consi-
dered:

1. Does a failure exist?
2. Which satellite is transmitting a faulty signal?

The first test is called Failure Detection (FD) the second Failure Identifica-
tion (FI). For all these tests is assumed that only one satellite at a time will be trans-
mitting an unpredicted erroneous signal. Three RAIM algorithm schemes which
have been proposed for implementation are (known as Snapshot RAIM) [2]:

− Parity Method;
− Least-Squares-Residuals Method;
− Constant-Detection-Rate/Variable-Protection-Level Method.

Before these algorithms can be applied, a prediction is needed to determine
whether the geometry of the available constellation of satellites will be sufficient to
allow for RAIM – RAIM Availability (see section 1.3). With a minimum of five
satellites it is possible to detect whether an error exists in one of the measurements –
again assuming a certain geometrical quality of the constellation. At least six satel-
lites are required to carry out Failure Detection and Identification (FDI).

O b s e r v a t i o n  E q u a t i o n  a n d  M e a s u r e m e n t  M o d e l
The range measurement to an individual satellite can be described by follo-

wing observation equation:

( ) ntropion ddTtcR εδδρ +++−⋅+= , (1)

where: ρ – measured pseudorange;
R – geometrical range;
c – speed of light;
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δt – satellite clock error;
δT – receiver clock error;
dion – error connected with influence of ionosphere;
dtrop – error connected with influence of troposphere;
εn – measurement noise.

The observation equations for the individual satellites result the following
linear equation system [2]:

εGxy += , (2)

where: y – vector of linearised measurements compensated by a priori information;
G – geometrical matrix (direction cosine matrix);
x – innovation matrix;
ε – vector of Gaussian-distributed measurement errors.

This equation system is over-determined in case of more than four measu-
rements and is usually solved by a least-square-adjustment. The least-square esti-
mate of the position innovation vector ( )LSx̂ is given by:

( ) yGGGx TT
LS

1ˆ −
= . (3)

The least-square solution can now be used to predict measurements in
accordance with:

LSxGy ˆˆ = . (4)

Now we can form vector of residuals ( )w :

yyw ˆ−= . (5)

The sum of the squares of the residuals plays the role of the basic observable
in the snapshot RAIM methods. Parkinson and Axelrad called it ( )SSE  for sum of
squared errors. We do also:

wwTSEE = . (6)
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A  B a s e l i n e  S n a p s h o t  R A I M  S c h e m e
To determine whether an error has occurred in one of the measurements,

statistical hypotheses can be formulated about the assumption that a defined event –
here: no failure – will occur [2]:

− Null-Hypothesis H0 – assumption that no failure will occur;
− Alternate-Hypothesis H1 – assumption that a failure will occur.

The decision process is implemented by a comparison of Decision Variable
( )D  with threshold ( )T :

TD <  – Null-Hypothesis H0 accepted;
TD ≥  – Alternate Hypothesis H1 accepted.

In snapshot RAIM method it is convenient to work with a test statistic that is
derived form SSE . Very often as a Decision Variable ( )D  is used:

4−
=

n
SSED , (7)

where: n  – number of visible satellites.

With this definition, the radial position error and the test statistic have the
same dimensions and their ratio is dimensionless.

If all elements of ( )ε  have the same independent zero-mean Gaussian distri-

bution, the statistical distribution of ( )D  is completely independent of the satellite

geometry. But if any unexpected errors occur ( )D  will have non-central 2χ  distribu-
tion which is dependent of the satellite geometry. Thus, before snapshot RAIM algo-
rithms can be applied, a prediction is needed to determine whether the geometry of
the available constellation of satellites will be sufficient to allow for RAIM – RAIM
Availability. This prediction is called Screening Out Poor Detection Geometries.

S c r e e n i n g  O u t  P o o r  D e t e c t i o n  G e o m e t r i e s
Various criteria have been used for evaluating the quality of satellite

geometry for detection purposes. Of these, maxHδ  and ARP are probably the best [3].

The maxHδ  method proceeds as follows:

1. Compute the HDOPs associated with the n subset solutions. Call these iHDOP ,
i = 1, 2, …, n, where n – number of visible satellite.
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2. Compute the HDOP associated with the full n-satellite least-squares solution.
Call it HDOP .

3. Then:

22
max HDOPHDOPMaxH ii −=δ (8)

The parameter maxHδ then becomes an inverse measure of the quality of the

satellite geometry for failure detection purposes (small values are best). A ceiling
value for maxHδ  is then set accordance with the integrity specification and if calcu-

lated maxHδ  for geometry at hand exceeds the ceiling value, the geometry is decla-

red inadmissible; otherwise, it is admissible.[1]
The ARP method derives from geometric considerations when we look at

a plot of position radial error vs. test statistic (see fig. 1). A bias error on any parti-
cular satellite projects linearly into both the position-error and test-statistic domains.
The slope, which relates the induced position error to the test statistic, can be readily
calculated from the satellite geometry and it will be different for each satellite. For
failure detection purposes the satellites whose bias error causes the largest slope is
the one that is the most difficult to detect. It is the one that produces the largest po-
sition error (which we want to protect) for a given test statistic (which is what we
can observe). We call the slope associated with the most-difficult-to-detect satellite
SLOPEmax [1].
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Fig. 1. Plot of position radial error vs. test statistic
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The ARP value depends only on the satellite geometry and threshold setting
and it is computed as follows [3]:

1. Define matrices A and B as

( )
( ) .

,

T1T

T1T

GGGGB

GGGA
−

−

=

=
(9)

2. Compute a quantity called SLOPE for each satellite in view:

( )( )
ii

2
2i

2
1i

B1
4AA)(

−
−+

=
niSLOPE

For i = 1, 2, …, n

3. Define maxSLOPE as:

[ ])(max iSLOPEMaxSLOPE i= (11)

4. Then

thresholdSLOPEARP ⋅= max (12)

The ARP value then becomes measure of the quality of the satellite geome-
try for failure detection purposes. As in case of parameter maxHδ  small values of
ARP  are best. A ceiling value for ARP  (call it maxARP ) is then set accordance with
the integrity specification and if calculated ARP  for geometry at hand exceeds the
ceiling value, the geometry is declared inadmissible; otherwise, it is admissible.

INFLUENCE OF URBAN AREAS ON RAIM AVAILABILITY

ARP informs user about approximated value of radial position error which
can be detected. Thus, we can define RAIM availability as follows:
− RAIM is available if calculated ARP at hand value is less or equal than maxARP ;
− RAIM is unavailable if calculated ARP  at hand value exceeds the maxARP .

 (10)
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As was shown in previous section, ARP  value depends only on satellite
geometry and threshold setting. R. G. Brown in [3] shown, that for test statistic defi-
ned in (7) both maxHδ  and ARP methods are equivalent. Because of many obstruc-
tions which can occur in urban areas such as buildings which block satellite signals,
numbers of visible satellite decrease and satellite geometry can strongly degenerate.
What is more, it could happen that less than five satellites will be visible and in con-
sequence, RAIM procedure will be unavailable.

All in all, we can expect that ARP  ( maxHδ ) values can dramatically incre-
ase in urban canyons and RAIM availability will be less than in open areas. To con-
firm this expectation the special computer application was done. Thanks it, it was
possible to simulate influence of urban areas on RAIM availability.

REVIEW OF THE SIMULATION PROCEDURE

During the simulation we assumed that:

− to determine user’s positions GPS system is used (nominal constellation defined
in SPS-2001);

− GPS pseudorange measurements errors are independent zero-mean Gaussian
random variables with the same standard deviation σ  = 6m;

− to compute estimated position of the user all visible satellites are used;
− all computations are done in ECEF co-ordinates system;
− the user is located in urban area defined as it shown in fig. 2;
− user’s true positions are random located on the surface of the Earth;
− the simulations are done for 24 hours with 1 second interval (1 Hz fixes

frequency);
− the parameters maxHδ and ARP are compute according to (1) and (5) for test

statistic defined as in (7);
− the ceiling value for ARP is equal 100 m.

The simulation procedure was divided in two parts. In the first step the user
was located at random in an open area and we simulated 86 400 fixes in each point.
Then we placed the user at the same points as in previous step and we simulated
86 400 fixes again but an open area was replaced by model of urban area shown in
fig. 2. The simulations results are presented in the next section.
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Fig. 2. Model of urban area used in the simulations

THE RESULTS OF SIMULATIONS

Due to restricted length of this paper only the results of simulations in one
point are presented. The true position of the user in ECEF co-ordinate system was:

X = 6 378 137,        y = 0,         z = 0.

Fixes errors in plans XoY and YoZ are presented in fig. 3.
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Fig. 3. Fixes errors in planes XoY and YoZ during the simulation
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Values of root-mean-square errors (M rms) are contained in table below.

Table 1. Values of root-mean-squares errors during the simulation

Values Plane XoY Plane XoZ Plane YoZ Space XYZ
1M rms (p = 0.65) 10.15 m 9.93 m 4.67 m 10.57 m
2M rms (p = 0.95) 20.30 m 19.86 m 9.34 m 21.14 m
3M rms (p = 0.98) 30.45 m 29.79 m 14.01 m 31.71 m

It is easy to notice that values of M rms errors are similar to errors contained in
SPS-2001. What is more, simulated nominal GPS constellation guaranteed that the num-
ber of visible satellites is more than 8 (see fig. 4) and in consequence, values of HDOP
were less than 2 (see fig. 5) and parameters maxHδ did not exceed 2.6 (see fig. 6).
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Fig. 4. Number of visible satellites during the simulation
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Fig. 5. HDOP values in planes XoY, XoZ and YoZ during the simulation
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Fig. 6. Values of maxHδ parameters in planes XoY, XoZ and YoZ during the simulation

In consequence, values of Approximate Radial-Error Protected (ARP) were
less than 40 m in YoZ plane and less than 80 m in XoY and XoZ planes (see fig. 7).
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Fig. 7. Values of ARP parameters in planes XoY, XoZ and YoZ during the simulation.
ARPmax(t) value represents maximum acceptable (ceiling) value of ARP
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On fig. 7 we can see that calculated ARP values during the simulation have
never exceeded maximum acceptable value of ARP represented by red dot line.
Thus, RAIM availabilities in all planes were equal 1.

The situation completely changed when an open area was replaced by the
model of urban area (shown in fig. 2). Fixes errors increase more than two times
(see fig. 8).
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Fig. 8. Fixes errors in planes XoY and YoZ during the simulation

Values of root-mean-square errors (M rms) are contained in table below.

Table 2. Values of root-mean-squares errors during the simulation

Values Plane XoY Plane XoZ Plane YoZ Space XYZ
1M rms (p = 0.65) 25.34 m 24.89 m 7.67 m 25.71 m
2M rms (p = 0.95) 50.68 m 49.78 m 15.34 m 51.42 m
3M rms (p = 0.98) 76.02 m 74.67 m 23.01 m 77.13 m

The fixes errors increased because of less number of visible satellites. Intro-
duced obstructions (buildings) caused that sometimes only 4 satellites were visible
(see fig. 9).
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Fig. 9. Number of visible satellites during the simulation

Of course, less number of visible satellites means increasing HDOP values (see fig. 10).
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Fig. 10. HDOP values in planes XoY, XoZ and YoZ during the simulation

Less number of visible satellites also causes dramatically increasing of pa-
rameters maxHδ  (see fig. 11). Please notice that Y axis is restricted to 50.
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Fig. 11. Values of maxHδ parameters in planes XoY, XoZ and YoZ during the simulation

In consequence, we have enormous values of Approximate Radial-Error
Protected (ARP) (see fig. 12). In this case Y axis was restricted to 1000 m.
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Fig. 12. Values of ARP parameters in planes XoY, XoZ and YoZ during the simulation.
ARPmax(t) value represents maximum acceptable (ceiling) value of ARP
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In contrast to the simulation which was done in an open area, during the
simulation with urban area model, calculated ARP values exceeded maximum
acceptable value of ARP represented by red dot line many times (see fig. 13). Thus,
graphs of RAIM availabilities were as follows.
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Fig. 13. RAIM availability in planes XoY, XoZ and YoZ during the simulation

Values of RAIM availability during the simulation are contended in table below.

Table 3. Values RAIM availability during the simulation

Values Plane XoY Plane XoZ Plane YoZ
RAIM availability 0.61 0.62 0.85
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CONCLUSIONS

The most important conclusions after the simulations are:

1. Present GPS constellation enables proper work of snapshot RAIM algorithms in
an open area. RAIM availability is equal almost 1.

2. RAIM availability dramatically decreases in urban areas. It is connected with
presence of buildings which block satellite signals. Because of that, number
of visible satellites decrease and in consequence ARP values significantly incre-
ase.

3. It is necessary to work out alternative methods of autonomous integrity monito-
ring in urban areas.

4. Created computer application can be used to simulate of urban area influence on
fixes accuracy and RAIM availability.
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