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Abstract— In the paper we are interested in the question of

coherence of radial implicative fuzzy systems with nominal

consequents (radial I-FSs with NCs). Implicative fuzzy sys-

tems are fuzzy systems employing residuated fuzzy implica-

tions for representation of IF-THEN structure of their rules.

Radial fuzzy systems are fuzzy systems exhibiting the radial

property in antecedents of their rules. The property simplifies

computational model of radial systems and makes the inves-

tigation of their properties more tractable. A fuzzy system

has nominal consequents if its output is defined on a finite un-

ordered set of possible actions which are generally quantita-

tively incomparable. The question of coherence is the question

of under which conditions we are assured that regardless the

input to the system is, an output of the system exists, i.e., the

output is non-empty. In other words, a fuzzy system is co-

herent if it has no contradictory rules in its rule base. In the

paper we state sufficient conditions for a radial I-FS with NCs

to be coherent.

Keywords— implicative fuzzy system, radial fuzzy system, nom-

inal output space, coherence.

1. Introduction

In the theory of fuzzy systems there are generally recog-

nized two approaches to the representation of IF-THEN

rules and their groups – rule bases [3, 7, 8]. They are the

conjunctive and the implicative approach. In the conjunc-

tive approach, IF-THEN structure of a rule is represented by

a fuzzy conjunction and individual rules are combined by

a fuzzy disjunction. In the implicative approach, IF-THEN

structure of a rule is represented by a fuzzy implication and

individual rules are combined by a fuzzy conjunction.

Radial fuzzy systems are fuzzy systems which have mem-

bership functions of fuzzy sets in their rules represented by

radial functions and exhibit the radial property. The radial

property is the shape preservation property related to an-

tecedents (IF parts) of IF-THEN rules. The presence of this

property simplifies the computational model of radial fuzzy

systems and enables an effective study of their properties.

Fuzzy systems with nominal consequents (THEN parts)

are those systems with finite, generally unordered, output

spaces. Such a space forms the universe of discourse on

which fuzzy sets in consequents are specified. Such an uni-

verse can be treated as a set of possible actions which are

quantitatively incomparable.

The question of coherence of a fuzzy system is an important

question related mainly to the theory of implicative fuzzy

systems [4, 9]. The request for coherence of an implica-

tive system can be seen as the request for the non-presence

of contradictory rules in its rule base, for if the rules are

contradictory there exists an input making the output of

the system to be empty. As a typical example of con-

tradictory rules consider the situation if (simultaneously)

one rule indicates go left action and the other go right

action.

In the literature, the question of coherence was discussed

mainly for fuzzy systems with ordinal consequents [2, 4],

i.e., for the systems having consequents’ fuzzy sets spec-

ified on ordered universes of discourse, typically on real

line R.

In this paper we are interested in the study of coherence

of radial fuzzy systems with nominal consequents (radial

I-FSs with NCs). In the next section we introduce the

computational model of these systems in an explicit way.

Section 3 is the main section of the paper and contains

two theorems stating sufficient conditions for coherence of

a radial I-FS with NCs. The paper concludes by Section 4.

2. Radial I-FSs with NCs

We consider the standard architecture of a fuzzy system.

That is, the system consists of four building blocks – sin-

gleton fuzzifier, implicative rule base, compositional rule

of inference (CRI) inference engine, and a defuzzification

block. The flow of a signal is as usual, i.e., from the fuzzifer

to the defuzzifier through the inference engine [7, 8].

2.1. Computational model of I-FSs with NCs

Under the implicative approach, a rule base consisting of m,

m ∈ N= {1,2, . . .}, rules has the following mathematical

representation:

RB(xxx,y) =
m
∧

j=1

A j(xxx) → B j(y), (1)

where A j is the representation of the antecedent in the

jth rule, j = 1, . . . ,m, B j is the consequent fuzzy set, → is

a residuated fuzzy implication and
∧

a fuzzy conjunction.

Typically
∧

= ⋆ , where ⋆ is the t-norm which is used to

form antecedents of rules and for specification of → , see

below.

Antecedents A js are generally specified on n-dimensional,

n ∈ N, input space X = R
n and represented in the standard

way as

A j(xxx) = A j1(x1)⋆ · · ·⋆ A jn(xn), (2)

where xxx ∈ Rn, xxx = (x1, . . . ,xn), A ji, i = 1, . . . ,n, are

one-dimensional fuzzy sets defined on respective one-
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dimensional parts of input space (in fact these are real

lines R), and ⋆ is a t-norm representing a fuzzy conjunction

(and linguistic connective). As mentioned, this ⋆ is usually

also used for representing
∧

in Eq. (1).

As we are interested in fuzzy systems with nominal

consequents we consider output space Y to correspond

to an unordered finite set (nominal space) of l ∈ N

generally mutually incomparable actions yk, k = 1, . . . , l,
i.e., Y = {y1, . . . ,yl}. Consequents’ fuzzy sets B js are then

considered to be specified on Y .

Let the input to a fuzzy system be xxx∗ ∈Rn. As we consider

the singleton fuzzifier to be employed in the system the

general CRI formula for computing output fuzzy set B′ from

the fuzzy system is simplified into the form

B′(y) = RB(xxx∗,y) , (3)

where RB is the representation of rule base. Employing the

implicative rule base Eq. (1) the above reads as

B′(yk) =
m
∧

j=1

A j(xxx
∗) → B j(yk). (4)

Introducing m individual output fuzzy set B′
j, each related

to the single rule j and defined by

B′
j(yk) = A j(xxx

∗) → B′
j(yk), (5)

the overall output is specified as

B′(yk) = B′
1(yk)⋆ · · ·⋆ B′

m(yk). (6)

To proceed let us recall the concept of residuated impli-

cation and its properties. Residuated fuzzy implications

are generalizations of Boolean implications. A residuated

implication →⋆ is derived on the basis of its associated

t-norm ⋆ according to formula

a →⋆ b = sup{c ∈ [0,1] |a ⋆ c ≤ b}. (7)

Examples of residuated fuzzy implications are the Gödel

implication derived from the minimum t-norm: a →M b =
1 iff a ≤ b and a →M b = b iff a > b; and the Goguen

implication derived from the product t-norm: a →P b = 1

iff a ≤ b and a →P b = b/a iff a > b. For details about

residuated implications see [6, 7].

An important property, valid for any residuated implica-

tion → (in the sequel we will not explictly indicate the

associated t-norm ⋆), is

a → b = 1 iff a ≤ b. (8)

On the basis of this property the computational model of

an I-FS with NCs is stated as follows:

Let the consequents fuzzy sets B js be normal, i.e., for

each rule j there exists a k such that B j(yk) = 1. Then

the core (or kernel) of B′
j set is specified as core(B′

j) =
{yk |B

′
j(yk) = 1}. Due to the normality of B j, core(B′

j) 6= /0.

Going back to how B′
j sets are defined, formula (5), and

employing the property (8) we can see that depending on

value of A j(xxx
∗) another yk(s) can occur in core(B′

j). More

specifically, for a given input xxx∗, an yk ∈ Y is in core(B′
j)

if and only if A j(xxx
∗) ≤ B j(yk). Let us denote core(B′

j)
for a given input xxx∗ by I j(xxx

∗). The following specification

formula for I j(xxx
∗) can be adopted:

I j(xxx
∗) = {yk ∈ Y |A j(xxx

∗) ≤ B j(yk)}. (9)

With respect to the overall output B′ of an I-FS with NCs,

which is given by formula (6), let us assume that for a given

input xxx∗ the corresponding output fuzzy set B′ is normal

and let us denote its core by I(xxx∗). From the properties

of t-norms (x1 ⋆ . . . ⋆ xn = 1 iff xi = 1 for all i) we ob-

tain I j(xxx
∗) to be determined as the intersection of particular

cores I j(xxx
∗), i.e.,

I(xxx∗) =
m
⋂

j=1

I j(xxx
∗). (10)

If I(xxx∗) 6= /0, then yk ∈ I(xxx∗) are those actions from Y which

are fully consistent with the input xxx∗ under the given im-

plicative rule base. That is, they make the evaluation of all

rules in the rule base to be (simultaneously) 1, so they are

natural candidates for the output of the I-FS for the given

input xxx∗ ∈ R
n.

Let as assume fuzzy set B′ to be normal for any in-

put xxx∗ and therefore core(B′) = I(xxx∗) 6= /0 for any xxx∗.

If we take as the output of I-FS with NCs an element

from I(xxx∗) we can consider this process as defuzzification

of B′ set. The answer to the question of which concrete

action from I(xxx∗) is taken (what deffuzification method

is used) depends on concrete application. Here we will

consider as output for given input xxx∗ ∈ Rn the whole

set I(xxx∗). Formally written, the computational model of

an I-FS with NCs has the form

I−FSNC(xxx∗) = I(xxx∗) =
m
⋂

j=1

I j(xxx
∗), (11)

I−FSNC(xxx∗) =
m
⋂

j=1

{yk |A j(xxx
∗) ≤ B j(yk)}. (12)

Let us show that for the computation of an I-FS (with NCs)

only firing rules are important. Indeed, let xxx∗ be an input

into the system, then two cases are possible with respect to

the jth rule: either the rule does not fire, i.e., A j(xxx
∗) = 0

or it fires, i.e., A j(xxx
∗) > 0.

With respect to the first case of A j(xxx
∗) = 0, we get imme-

diately I j(xxx
∗) = Y on the basis of property (8) of residuated

implication (a = 0). Forming the final output I(xxx∗) by in-

tersection (11), we see that if we exclude I j(xxx
∗) from the

intersection, then the result remains the same. Thus, if

a rule in an I-FS does not fire then it can be excluded from

the computation, under the assumption that at least one an-

other rule fires. If none of rules fires, i.e., if A j(xxx
∗) = 0

for all j, then I(xxx∗) = Y .

With respect to general formula (11) there are two questions

important. The first is related to how to specify I j(xxx
∗) sets
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in an explicit way. The second is related to the assumption

of non-emptiness of I(xxx∗) for any xxx∗ ∈ Rn. The first ques-

tion can be answered more explicitly in connection with

the class of so called radial fuzzy systems. The second

relates to the concept of coherence and for radial systems

is treated in Section 3. Let us now introduce the class of

radial fuzzy systems.

2.2. Radial I-FSs with NCs

The concept of a radial implicative fuzzy system with nom-

inal consequents is defined as follows:

Definition 1: An implicative fuzzy system with nominal

consequents is radial if:

(1) There exists a continuous function act : [0,+∞)→
[0,1], act(0) = 1 as follows: (a) either there ex-

ists z0 ∈ (0,+∞) such that act is strictly decreas-

ing on [0,z0] and act(z) = 0 for z ∈ [z0,+∞)
or (b) act is strictly decreasing on [0,+∞) and

limz→+∞ act(z) = 0.

(2) Fuzzy sets in antecedent and consequent parts of the

jth rule are specified as

A ji(xi) = act

(∣

∣

∣

∣

xi −a ji

b ji

∣

∣

∣

∣

)

, (13)

B j(yk) = µk j, (14)

where for each B j there exists at least one action yk

such that µk j = 1, i.e., fuzzy sets B js are normal;

n,m, l ∈N; i, j,k = 1, . . . ,n,m, l, respectively; xxx ∈Rn,

xxx = (x1, . . . ,xn); yk ∈ Y = {y1, . . . ,yl}; aaa j ∈ Rn,

aaa j = (a j1, . . . ,a jn); bbb j ∈ Rn
+, bbb j = (b j1, . . . ,b jn),

(i.e., b ji > 0); µk j ∈ [0,1].

(3) For each xxx ∈ Rn the radial property holds, i.e.,

A j(xxx)=A j1(x1)⋆ · · ·⋆A jn(xn)=act(||xxx−aaa j||bbb j
), (15)

where || · ||bbb j
is a scaled version of some ℓp norm

in R
n. This norm is common to all rules of the

fuzzy system.

Let us comment on the definition to clarify the concept.

An I-FS with NCs is radial if it satisfies three require-

ments. Before we dicuss these requirements let us recall

the concepts of radial function and ℓp norm, both defined

in R
n space.

Radial functions are generally defined by formula f (xxx) =
Φ(||xxx−aaa||), where Φ is a function from [0,+∞) to R,
|| · || is a norm in Rn and aaa ∈ Rn is a central point of

the function. Concerning radial fuzzy systems, the class of

so-called ℓp norms in Rn is important [5]. The definition

formula of ℓp norms depends on parameter p ∈ [1,+∞] and

reads as follows:

||uuu||p = (|u1|
p + · · ·+ |un|

p)1/p for p ∈ [1,+∞),

||uuu||∞ = limp→+∞ ||uuu||p = maxi{|ui|}.
(16)

Scaled ℓp norms, denoted by || · ||pbbb
, are derived from cor-

responding ℓp norms by incorporating a vector bbb ∈ Rn
+ of

scaling parameters, bbb = (b1, . . . ,bn), bi > 0, into the above

formulas. That is,

||uuu||pbbb
= (|u1/b1|

p +. . .+ |un/bn|
p)1/p ; p ∈ [1,+∞),

||uuu||∞bbb
= limp→+∞ ||uuu||pbbb

= maxi

{

|ui/bi|
}

.
(17)

Clearly, original unscaled ℓp norms are obtained from

scaled ones by choosing bbb = 111 = (1, . . . ,1). The most

prominent examples of scaled ℓp norms are scaled octaedric

(p = 1), Euclidean (p = 2) and cubic (p = +∞) norms.

Now we can discuss the definition of a radial fuzzy sys-

tem. The first two requirements are related to the specifi-

cation of membership functions of fuzzy sets employed in

IF-THEN rules. Especially, they relate to the shapes of one-

dimensional fuzzy sets which form antecedents of rules.

The requirement (1) specifies the “shape” of one-dimen-

sional fuzzy sets by specification of an act function. This

function is considered to be generally non-increasing and

can have two variants. The first variant corresponds to

a strictly decreasing function, the other has strictly decreas-

ing part and after reaching zero it is constant.

The requirement (2) is in fact the prescription which makes

one-dimensional fuzzy sets A ji to be radial. In one-dimen-

sional space the norm correspond to the absolute value,

central point corresponds to a ji ∈R and also (width) scaling

parameter b ji ∈R+, (R+ = (0,∞), i.e., b ji > 0) is employed.

The shape is determined by act function.

Consequents’ fuzzy sets B js are required to be normal. In

formula (14) the simplification of notation is adopted in

form of B j(yk) = µk j (the indices are switched). Particular

µk j can be seen as the membership degree of action yk to

the consequent of the jth rule.

The requirement (3) is in fact the radial property. The

property requires a radial shape preservation of one-

dimensional fuzzy sets in antecedents after their combina-

tion by a t-norm according to formula (2). Mathematically,

the property is specified by equality (15). We can see that

the property requires antecedents to be represented by radial

functions (now in n-dimensional space R
n) which have the

same shape act as one-dimensional fuzzy sets A ji. More-

over, central point aaa j ∈Rn is required to be composed from

one-dimensional central points a ji, i.e., aaa j = (a j1, . . . ,a jn).
Similarly, scaling parameter bbb j ∈∈∈ Rn

+ is required to be

composed from one-dimensional scaling parameters b ji,

i.e., bbb j = (b j1, . . . ,b jn).
The radial property is not trivial. If the specification of one-

dimensional fuzzy sets A ji is given together with a certain

t-norm, then the specification of A j is determined; and this

specification need not have the form of a multidimensional

radial function. For example, if triangular fuzzy sets are

combined by the product t-norm then it can be shown [2]

that the resulting representation of A j does not exhibit the

radial property in the sense of formula (15).

The question of which shapes (act functions) and t-norms

can be combined so the radial property hold is partially
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answered in [1, 2]. As an example of radial I-FSs let us

present here Mamdani and Gaussian radial I-FSs [2].

In the Mamdani radial I-FS, the used t-norm is the

minimum t-norm, corresponding residuated implication

is the Goguen implication and act function has form

act(z) = max{0,1− z}. This act function is of (1)(a) type

of Definition 1. The resulting one-dimensional fuzzy sets

are triangular and ℓp norm in antecedents is the cubic

norm.

In the Gaussian radial I-FS, the used t-norm is the product

t-norm, corresponding residuated implication is the Gödel

implication and act function has form act(z) = exp(−z2).
This act function is of (1)(b) type of Definition 1. The

resulting one-dimensional fuzzy sets are Gaussian curves

and ℓp norm in antecedents is the Euclidean norm. In the

case of this system the radial property can be easily verified

on the basis of well know behavior of Gaussian curves

with respect to product (the product of one-dimensional

Gaussian curves is a multidimensional Gaussian curve).

2.3. Computational model of radial I-FSs with NCs

In the previous section we have presented the notion of

a radial I-FS with nominal consequents. In this section we

will discuss its computational model in a more explicit way.

As we have mentioned in Subsection 2.1, with respect to

the general computational model of an I-FS with NCs there

are important two questions. The first relates to the spec-

ification of particular outputs I j(xxx
∗) and the second to the

coherence of the system. In the case of a radial I-FS with

NCs we have the following straightforward answer to the

first question: if the system is radial, then

I j(xxx
∗) = { yk | act(||xxx∗−aaa j||)bbb j

≤ µk j }. (18)

Thus, on the basis of the radial property, a yk ∈ I j(xxx
∗) if

and only if a transformed (by act function) scaled norm of

distance of input xxx∗ from central point aaa j is lower or equal

to the membership degree of yk to the consequent fuzzy

set B j.

In fact, the computational gain from the presence of radial

property is not so significant as for the radial I-FSs with

ordinal consequents [2]. However, the radial property al-

lows us to explicitly express for which inputs xxx∗ ∈ Rn the

action yk is not included in I j(xxx
∗). Based on formula (18),

we know that yk 6∈ I j(xxx
∗) iff act(||xxx∗−aaa j||)bbb j

> µk j . Now,

the following chain of equivalent inequalities can be intro-

duced: let for an input xxx∗ the action yk 6∈ I j(xxx
∗), then

act(||xxx∗−aaa j||bbb j
) > µk j, (19)

act+(||xxx∗−aaa j||bbb j
) > µk j, (20)

||xxx∗−aaa j||bbb j
< act−1

+ (µk j), (21)

||xxx∗−aaa j||bbb j
< rk j , (22)

where rk j = act−1
+ (µk j). The reverse holds too, i.e., if (22)

holds then yk 6∈ I j(xxx
∗).

In the above chain of inequalities, if act is of type (1)(a)

of Definition 1, then act+ is the restriction of act function

on interval [0,z0]. This restriction is a strictly decreasing

function and therefore act−1
+ : [0,1] → [0,z0] is well de-

fined. If act function is of type (1)(b), then act+ = act

for z ∈ [0,+∞) and act−1
+ = act−1 on domain (0,1]. We

set by definition act−1
+ (0) = +∞. Thus, also in this case

act−1
+ : [0,1] → [0,+∞] is well defined. Based on the def-

inition of act−1
+ function we see that values rk j are well

defined too, and rk j ∈ [0,+∞].
As we will see in the next section, the possibility of in-

troduction of inequality (22), which would not be possible

without presence of the radial property, helps significantly

in testing the coherence of radial I-FSs with NCs.

3. Coherence of radial I-FSs with NCs

The question of coherence of an implicative fuzzy system

is the question of non-presence of contradictory rules in the

rule base of the system. Incoherence is indicated by empty

output of the system for certain input(s). The emptiness is

caused by non-existence of common points in outputs of

individual rules in the rule base (the intersection of par-

ticular outputs is empty). In order to avoid this situation

we are looking for at least sufficient conditions on param-

eters of the system which assure that the case of empty

intersection cannot occur for any possible input. Thus, we

can say that the system is coherent if and only if for any

possible input it has a non-empty output. In this section

we will investigate the coherence of radial I-FSs with NCs.

In order to obtain sufficient conditions we start from the

computational model of this class of systems.

Based on chain of inequalities (19)–(22) we can state for

every action yk and rule j so-called region of incoherence

RICk j as the set of those inputs1 xxx∈Rn for which yk 6∈ I j(xxx).
We have

RICk j = {xxx ∈ R
n | ||xxx−aaa j||bbb j

< rk j }. (23)

In other words, RICk j is the set of those inputs which ex-

clude action yk from output I j(xxx), or, it is the set of those

inputs for which action yk is not included in output I j(xxx).
Clearly, if xxx 6∈ RICk j, then yk ∈ I j(xxx). Based on the above

formula, the regions of incoherence RICk js, k = 1, . . . , l,
j = 1, . . . ,m can be seen as deformed (due to the scaling in

norm) hyperballs in Rn space.

For every action yk, k = 1, . . . , l, let us introduce its region

of incoherence RICk as the union of RICk j over all rules j,

i.e.,

RICk =
m
⋃

j=1

RICk j. (24)

RICk can be interpreted as follows: if an input xxx is in RICk,

then there exists a rule j such that yk 6∈ I j(xxx) and therefore

yk is not included in the overall output I(xxx) of the system.

The reverse holds too, i.e., if yk 6∈ I(xxx) then xxx ∈ RICk.

1From now on we will denote the input by xxx instead of former xxx∗.
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The next step in specification of conditions of coherence is

straightforward.

Lemma 1: A radial I-FS with NCs is coherent if and only

if

RIC =
l

⋂

k=1

RICk =
l

⋂

k=1

m
⋃

j=1

RICk j = /0. (25)

Proof: Inspecting the intersection of RICk over possible

actions two cases can occur. If this intersection is empty,

then there does not exist any input which would excluded si-

multaneously all actions from the output of the system, i.e.,

the system is coherent. On the other hand, if the intersec-

tion is non-empty then points (inputs) in this intersection

are witnesses of incoherence, as they exclude simultane-

ously all actions from the overall output. �

In the sequel we will investigate the intersection of unions

of deformed hyperballs presented by formula (25). Ac-

tually, the question is how to test that the intersection of

unions of hyperballs is empty (or non-empty). To solve this

question, let us explicitly remark that if µk j = 1, then rk j = 0

(because act−1
+ (1) = 0) and formula (23) yields RICk j = /0.

On the other hand, if µk j = 0 and act is of (1)(b) type of

Definition 1, then rk j = +∞ and RICk j = Rn. Both cases

are important as we will see below.

Intersection (25) is non-empty (the system is incoherent)

if and only if there exists a permutation with repetition

π = ( j1, . . . , jl), π(1) = j1,π(2) = j2, . . . of rule indices

{1, . . . ,m} such that the intersection

Iπ = RIC1, j1 ∩RIC2, j2 ∩·· ·∩RICl, jl (26)

is non-empty. The length of the permutation is l, i.e., it

equals to the number of actions. If we show that for any

permutation π with repetition of length l from rule indices

{1, . . . ,m} the intersection (26) is empty, then the corre-

sponding radial I-FS with NCs is coherent.

To better understand the above, it is worth to consider

the scheme presented in Table 1. If the system is inco-

herent, then there exists an input xxx such that simultane-

ously xxx ∈ RICk for all k. Since RICk is given by union

of RICk j, this can be interpreted as follows: for this xxx and

for every row k in Table 1 there exists a column j such

that xxx ∈ RICk j. We code the indices of these columns as

permutation π(k). Clearly, if for every such permutation π

Table 1

Incoherence regions

j = 1 j = 2 . . . j = m
⋃

j RICk j

k = 1 RIC11 RIC12 . . . RIC1m RIC1

k = 2 RIC21 RIC22 . . . RIC2m RIC2

...

k = l RICl1 RICl2 . . . RIClm RICl
⋂

k RICk

the intersection
⋂

k RICk is empty then the system is coher-

ent. This kind of testing of coherence will be elaborated in

the sequel.

There are two problems related to the testing scheme pro-

posed. First, how to test the emptiness of intersection (26)

for a given permutation π . Second, how to cope with the

curse of dimensionality as the number of all permutations

is ml for given number of rules m and actions l.

Let Iπ of (26) be non-empty for given permutation π ,

π(k) = jk, k = 1, . . . , l, i.e., π = ( j1, . . . , jl). Then for xxx ∈ Iπ

we have xxx ∈ RICk,π(k) for all k, which yields the following

k inequalities:

||xxx−aaaπ(k)||bbbπ(k)
< rk,π(k) for k = 1, . . . , l. (27)

To proceed let us remark that for any scaled ℓp norm in Rn

and any vector bbb ∈ Rn
+, uuu ∈ Rn the following inequality

holds:

(1/max
i
{bi})·||uuu|| ≤ ||uuu||bbb, (28)

and therefore if ||uuu||bbb j
< rk j then ||uuu||< (maxi{b ji}) ·rk j . In

the sequel we set srk j = maxi{b ji} · rk j for all k, j. On the

basis of this notation and inequality (28), inequalities (27)

imply

||xxx−aaaπ(k)|| < srk,π(k) for k = 1, . . . , l . (29)

Summing the above inequalities we obtain

∑
k

||xxx−aaaπ(k)|| < ∑
k

srk,π(k). (30)

Now, reversing the implication and employing the proper-

ties of norms in Rn we get the following theorem.

Theorem 1: Let Πm,l be the set of all permutations

with repetition of length l from the set of rule indices

{1, . . . ,m}. Let aaaπ be the average vector formed from vec-

tors aaaπ(1), . . . ,aaaπ(l). If for every π ∈ Πm,l

1

2
∑
k

||aaaπ −aaaπ(k)|| ≥ ∑
k

srk,π(k), (31)

then the system is coherent.

Proof: The theorem is a direct corrolarly of inequal-

ity (30). By the triangle inequality, for any xxx,aaaπ(k) ∈ Rn

we have

∑
k

||xxx−aaaπ(k)|| ≥ ||∑
k

(xxx−aaaπ(k))|| = || lxxx−∑
k

aaaπ(k)||

= l · ||xxx−aaaπ ||. (32)

We have also the following l inequalities valid (π(1) = j1,

π(2) = j2, . . . ):

||xxx−aaaπ(1)||+ ||aaaπ −xxx|| ≥ ||aaaπ −aaaπ(1)|| , (33)

||xxx−aaaπ(2)||+ ||aaaπ −xxx|| ≥ ||aaaπ −aaaπ(2)|| , (34)

...

||xxx−aaaπ(l)||+ ||aaaπ −xxx|| ≥ ||aaaπ −aaaπ(l)|| . (35)
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Summing these inequalities we get

∑
k

||xxx−aaaπ(k)||+ l · ||aaaπ −xxx|| ≥ ∑
k

||aaaπ −aaaπ(k)||. (36)

Since l · ||aaaπ −xxx|| = l · ||xxx−aaaπ || and inequality (32) holds

the above gives

∑
k

||xxx−aaaπ(k)||+∑
k

||xxx−aaaπ(k)|| ≥ ∑
k

||aaaπ−aaaπ(k)||, (37)

∑
k

||xxx−aaaπ(k)|| ≥
1

2
∑
k

||aaaπ−aaaπ(k)|| (38)

for every xxx ∈Rn. Therefore the minimum of the left side is

bounded from below by the constant which is given by the

right side. If this constant is greater or equal to the sum

of srk,π(k) then there cannot exists an xxx for which inequal-

ity (30) holds and intersection Iπ for this π is empty. If

inequality (31) holds for every π ∈ Πm,l then the system is

coherent. �

Theorem 1 states the sufficient condition for checking the

emptiness of intersection Iπ for given π . The problem is

that in order to test the coherence of a radial I-FS with NCs

we have to perform generally ml tests for all permutations π
from Πm,l set. This number can be slightly lowered on the

basis of the following lemma.

Lemma 2: If a radial I-FS with NCs is coherent, then for

each rule j there must exist an action yk such that µk j = 1.

Proof: Due to the properties of act function we have

rk j = 0 iff µk j = 1. If for some rule j and all actions yk

would be µk j < 1, then also rk j > 0 for all k and aaa j ∈ RICk j

for all k. Considering permutation π = ( j, . . . , j) we would

get aaa j ∈ Iπ and the system would be incoherent. Let us

note that if rk j = 0, i.e., if µk j = 1, then RICk j = /0 and

aaa j 6∈ RICk j . �

The direct corollarly of the above lemma is the fact that if

the necessary condition is satisfied, which is our case, see

Definition 1, then the number of permutations which have

to be tested can be lowered to (m− 1)l and only proper

permutations have to be generated for testing. A permuta-

tion is proper if there exists at least two k1, k2 such that

π(k1) 6= π(k2).

We proceed by introducing Table 2 which is similar to

Table 1 and contains in each cell the value of srk j .

As rk j ∈ [0,+∞] and maxi{b ji}> 0, we have srk j ∈ [0,+∞].
srk j = 0 iff rk j = 0, which corresponds to µk j = 1 and con-

sequently to RICk j = /0. So if there is zero in the kth row

and the jth column of Table 2, then Iπ = /0 for permuta-

tions having π(k) = j and these permutations need not be

tested.

On the other hand, srk j = +∞ iff rk j = +∞. This cor-

responds to the situation of µk j = 0 and act being of

(1)(b) type. In this case the region of incoherence is given

by whole space R
n. Actually, for any input xxx to the system

we have A j(xxx) > 0 and therefore yk can never occur in the

output of the system.

Concerning the last row of Table 2, we denote by k∗( j)
the index k for which maximum of srk j is reached in the

jth column of the table. Thus k∗( j) = argmaxk{srk j} and

rsmax, j = rsk∗( j), j.

Table 2

Incoherence limit points

j = 1 j = 2 . . . j = m

k = 1 sr11 sr12 . . . sr1m

k = 2 sr21 sr22 . . . sr2m

...

k = l srl1 srl2 . . . srlm

max srmax,1 srmax,2 . . . srmax,m

Now, let the so-called symmetric regions of incoherence

SRICk j for given k, j be specified according to the following

formula:

SRICk j = {xxx ∈ R
n | ||xxx−aaa j|| < srk j }. (39)

Recalling the discussion presented when sr values were

introduced (formula (28)) we can see that if xxx ∈ RICk j,

then xxx ∈ SRICk j, i.e., RICk j ⊆ SRICk j for all k, j and

also RICk j ⊆ SRICk∗( j), j for constant j and k = 1, . . . , l. The

specification of SRICk∗( j), j enables us to state the following

theorem.

Theorem 2: Let a radial I-FS with NCs consists of m

rules. Let for any pair of different rules j1, j2 ∈ {1, . . . ,m},

j1 6= j2, the following holds:

||aaa j1 −aaa j2|| ≥ srmax, j1 + srmax, j2 . (40)

Then the system is coherent.

Proof: To start let us show that for the special case

of l = 2, the factor 0.5 can be ommited in formula (31).

Let SRICi = {xxx ∈ R
n | ||xxx −aaai|| < sri} for some aaai ∈ R

n,

sri ≥ 0, i = {1,2}. Let SRIC1 ∩SRIC2 6= /0, then there ex-

ists an xxx such that ||xxx−aaa1|| < sr1, ||xxx−aaa2|| < sr2 and also

||xxx−aaa1||+ ||xxx−aaa2|| < sr1 + sr2. Since by the triangle in-

equality we have ||xxx−aaa1||+ ||xxx−aaa2|| ≥ ||aaa1−aaa2||, the min-

imum of the left side is reached for both xxx = aaa1, xxx = aaa2 and

has the value ||aaa1−aaa2||. So we can conclude that if the in-

tersection of two hyperballs SCRIi, i ∈ {1,2} is non-empty

then ||aaa1 −aaa2|| < sr1 + sr2.

Now, assume that under the validity of the above theorem

the system is incoherent. Then there must exist a proper

permutation π such that Iπ is non-empty. Let j1 = π(k1) 6=
π(k2) = j2 for some k1, k2, then RICk1, j1 ∩ RICk2, j2 6= /0.

As RICki, ji ⊆ SRICk∗( ji), ji
for i = {1,2} then we have also

SRICk∗( j1), j1
∩SRICk∗( j2), j2

6= /0 which implies ||aaa j1−aaa j2||<
srmax, j1 + srmax, j2 . A contradiction. �
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The above theorem reduces the number of inequalities

that have to be tested in order to check the coherence of

the system to m(m−1)/2, as inequalities (40) are symmet-

ric with respect to j1, j2. However, the reduction of the

number of tests is for the price of lowering the speci-

ficity of the tests. That is, the testing according to The-

orem 2 will state more systems possibly incoherent than

when the testing according to Theorem 1 is adopted. The

reason for this fact is that in the case of Theorem 1

we check the emptiness of intersection of l hyperballs.

In the case of Theorem 2, regardless the number l of

actions is, we always test the intersection of only two

hyperballs.

4. Conclusions

In the paper we have introduced the concept of the ra-

dial implicative fuzzy system with nominal consequents

(radial I-FS with NCs). We have presented its compu-

tational model and investigated the notion of coherence

for this class of fuzzy systems. We have presented two

theorems stating two sufficient conditions (in fact set

of conditions/inequalities) which assure the coherence of

a radial I-FS with NCs.

The first sufficient condition, stated by Theorem 1, is based

on the radial property which helps to investigate the coher-

ence, however, it suffers from the curse of dimensionality

because the number of tests to verify the coherence is gen-

erally (m−1)l , where m is the number of rules and l is the

number of actions.

The second sufficient condition, stated by Theorem 2, needs

only m(m−1)/2 tests for the verification of coherence.

However, the specificity of the second sufficient condition

is lower than of the first condition. That is why, we rec-

ommend to use the tests according to the first condition

anywhere where this is computationally tractable (low val-

ues of m and mainly l).

Because the lack of specificity during the tests according

to the second sufficient condition, the next direction in our

research is to elaborate an efficient tree-like algorithm for

testing the coherence based on the first sufficient condition.

The basic idea of this algorithm is not to test permutations

which are clear to yield empty intersections because they

contain empty sub-intersections.
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