
Paper Distributed, asynchronous

algorithms for network control

with contracted flow rates – a review
Andrzej Karbowski

Abstract— The paper reviews current algorithms for dis-

tributed, asynchronous control of networks when the customer

is guaranteed to get some predetermined (e.g., as a part of

a service level agreement – SLA) values of flow. Two cases are

considered – both with single and multiple commodity. It is

assumed, that the flow cost functions are convex with special

attention devoted to linear and strictly convex cases.

Keywords— computer networks, asynchronous algorithms, dis-

tributed optimization, routing, quality of service, service level

agreement.

1. Introduction

In the network optimization (e.g., in the Internet traffic

control) one of the most important problems is elabora-

tion of such policies, which guarantee that the service

provider will deliver to the customer the contracted amount

of the commodity flow (bandwidth in data networks). This

amount is rigid and usually specified in service level agree-

ment (SLA).

One may distinguish two situations:

• When the operator is obliged to deliver to all network

nodes (customers) the contracted amount of flow of

the same commodity, no matter from where; such

situation is typical for power and water networks; in

the Internet subnetworks with contracted access rates

and many connection points to other operators’ sub-

networks as well as some peer-to-peer (P2P) compu-

tational grids may be modelled in this way.

• When the operator is responsible for the delivery of

different commodities at the contracted level. Such

problems are characteristic for transportation net-

works, and for data networks with higher quality of

service (QoS) demands, such as networks with vir-

tual connections (that is with isochronous traffic),

for example: voice over Internet Protocol (VoIP),

video-conferences, video on demand, etc.

Because networks are bigger and bigger, it is more and

more difficult to control them effectively. Hence, in the

recent years a special attention is paid to decentralized op-

timization and control algorithms. Especially, their asyn-

chronous versions catch great attention of scientists dealing

with management and control of networks. It is due to the

flexibility and scalability of asynchronous algorithms. In

such algorithms, the computing nodes may use outdated

information and communicate with each other at different,

random times, but this does not destroy the convergence.

Moreover, the situation in networks, for example traffic in

data networks, is changing dynamically. Asynchronous al-

gorithms, using always the latest information, which is mea-

sured in the neighbourhood of the computing nodes, lead

the network towards the current global optimum. Nowa-

days, for such a big and nonhomogenous network as Inter-

net, it is even difficult to imagine an effective optimization

mechanism that would not be distributed and asynchronous!

In the article such algorithms for single and multicommod-

ity networks with contracted flow rates will be presented.

Several different approaches will be considered, such as:

standard primal-dual, ε-relaxation, an approach based on

minimum first derivative length principle, an approach

based on multiple adaptive traffic engineering method. It is

assumed, that the flow cost functions are convex with spe-

cial attention devoted to linear and strictly convex cases.

This paper is complementary to the paper “Distributed

asynchronous algorithms in the Internet – new routing and

traffic control methods” [7] presented at DSTIS 2004 Con-

ference and closes the series of review papers devoted to

distributed asynchronous network algorithms presented by

the author at DSTIS conferences.

2. The optimization of flows in single

commodity networks with linear

and nonlinear cost functions

2.1. General convex functions

We consider a directed graph consisting of n nodes

(routers). Let us denote by N the set of all these nodes,

by A the set of all arcs (that is, the set of all links in the

network) and by Ni the set of neighbours of the ith node

(that is, the set of all nodes from the set N, to which arcs

starting from i go). Let us assume, that every arc (i, j) ∈ A

is characterized by a continuous, convex function ai j(fi j)
of the cost of the realization of the flow fi j from the node i

to j and box flow constraints:

fi j ∈ Fi j = [bi j,ci j]. (1)

With every node i ∈ N we connect a given supply si > 0

or demand si < 0. Our goal is the calculation of such

46

Distributed, asynchronous algorithms for network control with contracted flow rates – a review

a distribution of flows between nodes, that all demands

are satisfied and the total cost of these flows is minimal,

that is

min
f

∑
(i, j)∈A

ai j(fi j) , (2)

∑
{ j|(j,i)∈A}

f ji + si = ∑
{ j|(i, j)∈A}

fi j, ∀i ∈ N , (3)

bi j ≤ fi j ≤ ci j, ∀(i, j) ∈ A , (4)

where f is a vector of all flows. Equations (3) result from

the balance of flows in the nodes (so-called 1st Kirchhoff

rule).

We assume, that supplies and demands si are balanced over

the network, that is:

∑
i∈N

si = 0 (5)

and, of course, that the set of admissible solutions (i.e., the

set of possible combinations of coordinates of the vector

of flows f) is not empty.

In the Internet such problem may be important for wide

area operators, who have several connection points with

other operators.

To solve this problem we formulate a Lagrange function [1],

but taking into account only balance constraints (3). If we

denote the multiplier corresponding to the ith node equation

as pi, it will be:

L(f , p) = ∑
(i, j)∈A

ai j(fi j)+∑
i∈N

pi

(

∑
{ j|(j,i)∈A}

f ji+si − ∑
{ j|(i, j)∈A}

fi j

)

.

(6)

Making some simple transformations we can present the

Lagrange function in the following way:

L(f , p) = ∑
(i, j)∈A

[

ai j(fi j)− (pi − p j) fi j

]

+ ∑
i∈N

pisi . (7)

Hence, the dual function in problem (2)–(4) will have the

form:

LD(p) = min
b≤ f≤c

{

∑
(i, j)∈A

[

ai j(fi j)−(pi−p j) fi j

]

+ ∑
i∈N

pisi

}

= ∑
(i, j)∈A

{

min
bi j≤ fi j≤ci j

[

ai j(fi j)−(pi−p j) fi j

]

}

+∑
i∈N

pisi

= ∑
(i, j)∈A

Li j(pi − p j)+ ∑
i∈N

pisi , (8)

where Li j is a component of the dual function correspond-

ing to the arc (i, j), that is:

Li j(pi − p j) = min
bi j≤ fi j≤ci j

[

ai j(fi j)− (pi − p j) fi j

]

. (9)

According to the duality theory [1, 6], the solution of the

problem (2)–(4) may be obtained by the solution of the dual

problem:
max
p∈Rn

LD(p) . (10)

To find the optimal solution of the problem (10) one may

use gradient of the dual function LD, with coordinates:

∂LD

∂ pi

= − ∑
{ j|(j,i)∈A}

L
′

ji(p j−pi)+ ∑
{ j|(i, j)∈A}

L
′

i j(pi−p j)+ si

= ∑
{ j|(j,i)∈A}

f ji − ∑
{ j|(i, j)∈A}

fi j + si . (11)

The equivalent statement of optimality conditions stemming

from duality theory is, that a flow vector f̂ is optimal if

and only if it is primal feasible, that is f̂i j ∈ Fi j ∀ i, j

and there exists a price vector p̂ satisfying together with f̂

the following conditions (called complementary slackness

conditions – CS) [3]:

a−i j(f̂i j) ≤ p̂i − p̂ j ≤ a+
i j(f̂i j) . (12)

In this expression leftmost and rightmost are, respectively,

the left and the right derivatives of the arc cost function.

Usually we deal with smooth cost functions and we have:

a−i j(f̂i j) = a+
i j(f̂i j) = a

′

i j(f̂i j) . (13)

In practical numerical calculations, while looking for

a good approximation of the optimal solution, a relaxed

version of the CS conditions proved to be very useful. For

a given scalar ε > 0 inequalities (12) are replaced by the

following:

a−i j(fi j)− ε ≤ pi − p j ≤ a+
i j(fi j)+ ε . (14)

These conditions are called ε-complementary slackness

conditions, ε-CS for short. The optimization approach

which applies ε-CS conditions is called ε-relaxation

method [3]. It consists in adjusting flows (“flow push”)

and increasing prices (“price rise”) at appropriate nodes in

such a way, that ε-CS conditions are maintained. This algo-

rithm may be implemented in a distributed, asynchronous

version [2], where each node i is a processor that updates

its own price and its arcs flows, and exchanges information

with its forward

Fi = { j|(i, j) ∈ A} (15)

and backward
Bi = { j|(j, i) ∈ A} (16)

adjacent nodes.

The information available at node i for any time t is as

follows:

pi(t): the price of node i;

p j(i,t): the price of node j ∈ Fi ∪Bi communicated by j

to i at some earlier time;

fi j(i,t): the estimate of the flow on the arc (i, j), j ∈ Fi,

available at node i at time t;

f ji(i,t): the estimate of the flow of arc(j, i), j ∈ Bi avail-

able at node i at time t.

47

Andrzej Karbowski

At each time t, each node i may be in one of the following

four phases:

1. Idle phase. Node i does nothing.

2. Computational phase. Node i computes the surplus

gi(t):

gi(t) = ∑
j∈Bi

f ji(i,t)− ∑
j∈Fi

fi j(i,t)+ si . (17)

If gi(t) < 0, node i does further nothing. Otherwise

the following values:

pi(t), fi j(i,t), j ∈ Fi, f ji(i,t), j ∈ Bi (18)

are updated. The updating is performed due to the

following procedure:

Step 1: (Calculation of the push list and the flow

margin)

Given a flow-price vector satisfying the ε-CS

conditions, the push list Li of node i, ∀i ∈ N,

is defined as follows:

Li = {(i, j)|ε/2 < pi(t)−p j(i,t)

−a+
i j(fi j(i,t)) ≤ ε}

∪{(j, i)|− ε ≤ p j(i,t)− pi(t)

−a−ji(f ji(i,t)) < −ε/2} . (19)

For each arc (i, j) or (j, i) in the push list Li,

the supremum of σ for which

pi(t)− p j(i,t) ≥ a+
i j(fi j(i,t)+ σ) (20)

or, respectively,

p j(i,t)− pi(t) ≤ a−ji(fi j(i,t)−σ) ,

is called the flow margin.

Step 2: (Scan of the push list)

If Li = /0 go to Step 4.

Step 3: (δ -Flow push)

Choose an arc from the push list Li and let

δ=min(gi(t), flow margin of the chosen arc).
(21)

Increase fi j by δ if (i, j) is the arc, or de-

crease f ji by δ if (j, i) is the arc. If as a re-

sult the surplus becomes zero, go to the next

iteration; otherwise, go to Step 2.

Step 4: (Price rise)

Increase the price pi by the maximum amount

that maintains ε-CS conditions. Go to the

next iteration.

3. Output phase. The values of pi(t), fi j(i,t), f ji(i,t),
computed during the computational phase, are com-

municated to the adjacent nodes j ∈ Fi ∪Bi.

4. Input phase. Node i receives from one or more ad-

jacent nodes j ∈ Fi ∪ Bi a message containing the

price p j(t
′) and the arc flow fi j(j,t ′) (when j ∈ Fi)

or f ji(j,t ′) (when j ∈ Bi), computed by node j, j ∈
Fi ∪Bi, at some earlier time t ′ < t.

On the basis of this information, the node i updates

p j(i,t) and fi j(i,t) if j ∈ Fi, (f ji(i,t), if j ∈ Bi).

If p j(t
′) ≥ p j(i,t), then p j(i,t) = p j(t

′).

In addition, if j ∈ Fi , the value of fi j(i,t) is replaced

by fi j(j,t ′) if

pi(t)<p j(t
′)+a+

i j(fi j(j,t ′))+ε and fi j(j,t ′)< fi j(i,t).
(22)

In the case of j ∈ Bi, the value of f ji(i,t) is replaced

by f ji(j,t ′) if

p j(t
′)≥pi(t)+a−ji(f ji(j,t ′))−ε and f ji(j,t ′)> f ji(i,t).

(23)

The algorithm terminates if there is a time tk such that, for

all t ≥ tk:

gi(t) = 0 ∀i ∈ N ,

fi j(i,t) = fi j(j,t) ∀(i, j) ∈ A ,

p j(t) = p j(i,t) ∀ j ∈ Fi ∪Bi .

It may be shown, that the algorithm converges if the initial

prices and flows satisfy ε-CS conditions, the nodes never

stop executing iterations and communication and assuring

that the old information is eventually purged from the sys-

tem [2].

2.2. Linear cost functions

In this case the optimization problem has the following

form:

min
f

∑
(i, j)∈A

ai j(fi j) = αi j fi j , (24)

∑
{ j|(j,i)∈A}

f ji + si = ∑
{ j|(i, j)∈A}

fi j, ∀i ∈ N , (25)

bi j ≤ fi j ≤ ci j, ∀(i, j) ∈ A . (26)

We may apply the algorithm presented in Subsection 2.1 in

a simplified version [4]1, taking as:

• arc cost derivatives:

a
′

i j(fi j) = αi j, (27)

1Chronologically the asynchronous version of the ε-relaxation algorithm

for linear minimum cost flow problems was presented much earlier in [4];

the version for convex problems from [2] was its extension.

48

Distributed, asynchronous algorithms for network control with contracted flow rates – a review

• the ε-CS conditions:

fi j < ci j ⇒ pi − p j ≤ αi j + ε, ∀(i, j) ∈ A , (28)

bi j < fi j ⇒ pi − p j ≥ αi j − ε, ∀(i, j) ∈ A , (29)

• the push list:

Li ={(i, j)| pi(t)= p j(i,t)+αi j+ε and fi j(i,t)<ci j}

∪{(j, i)| pi(t)= p j(i,t)−α ji +ε and b ji < f ji(i,t)} ,
(30)

• the flow margin:

σ =

{

ci j − fi j(i,t) j ∈ Fi

f ji(i,t)−b ji j ∈ Bi

, (31)

• the replacement conditions for flow estimates ((22)

and (23)):

– in the case of j ∈ Fi, the value of fi j(i,t) is

replaced by fi j(j,t ′) if

pi(t)< p j(t
′)+αi j and fi j(j,t ′)< fi j(i,t) , (32)

– in the case of j ∈ Bi, the value of f ji(i,t) is

replaced by f ji(j,t ′) if

p j(t
′)≥ pi(t)+α ji and f ji(j,t ′)> f ji(i,t). (33)

Application to the shortest path problem. For a single

connection it is also possible to formulate a shortest path

problem to find a shortest path from node s to node d as

the following linear minimum flow cost problem [3]:

min
f

∑
(i, j)∈A

αi j fi j , (34)

∑
{ j|(j,i)∈A}

f ji − ∑
{ j|(i, j)∈A}

fi j =











−1 if i = s

1 if i = d

0 otherwise

∀i ∈ N, (35)

0 ≤ fi j, (i, j) ∈ A . (36)

It may be solved in a distributed, asynchronous way through

the ε-relaxation algorithm. The optimal path will be made

of those arcs (i, j) for which f̂i j = 1 (for the remaining

f̂i j = 0).

2.3. Strictly convex arc cost functions

In this section we assume, that the functions ai j(fi j),(i, j)∈A

in problem (2)–(5) are strictly convex. This problem, both

the formulation and the basic features were taken from

the book [4].

First, let us notice from Eqs. (7) and (5), that the op-

timal Lagrange multipliers are not unique, because one

may add to all of them the same constant and the func-

tion value will not change. Hence, it is worthwhile to

fix one of the coordinates of the vector p and take for

example:

p1 = r , (37)

where r is an arbitrary nonzero real constant.

To solve the dual optimization problem (10) it is necessary

to solve the family of scalar optimization problems (9),

separately for every arc. They are very easy to solve, often

even analytically.

According to the duality theory [1, 6] the function LD

and all functions Li j are concave. It can be proved [4],

that the algorithm of the Lagrange multiplier iteration of

the form:

pi :=

{

r i=1

arg max
ξ

LD(p1, p2, . . . , pi−1,ξ , pi+1, . . . , pn) i=2,3, . . . ,n

(38)

is also an order preserving mapping and it is convergent in

a totally asynchronous version.

In fact, it is not necessary to perform optimization of LD

with the ith coordinate. To explain it let us define for

every i ∈ N \ {1} a point-to-set mapping Ri, which assigns

to every Lagrange multipliers vector p a set of all prices

which maximize the dual function LD with respect to the

ith price pi, that is:

Ri(p) = arg max
ξ

LD(p1, p2, . . . , pi−1,ξ , pi+1, . . . , pn) . (39)

It can be proved, that if the problem (2)–(4) and (5) is

feasible, that is:

∑
{ j|(i, j)∈A}

bi j − ∑
{ j|(j,i)∈A}

c ji ≤ si ≤ ∑
{ j|(i, j)∈A}

ci j − ∑
{ j|(j,i)∈A}

b ji (40)

then the set Ri(p) is either a singleton or a closed inter-

val. Due to the concavity and differentiability of LD every

point ξ ∈ R belonging to Ri(p) is a root of the scalar

equation:

∂LD(p1, p2, . . . , pi−1,ξ , pi+1, . . . , pn)

∂ pi

= 0 (41)

that is, due to Eq. (11):

Ri(p) =

{

ξ : ∑
{ j|(j,i)∈A}

L
′

ji(p j−ξ) = ∑
{ j|(i, j)∈A}

L
′

i j(ξ−p j)+ si

}

. (42)

Let us denote now as Ri(p) and Ri(p), respectively, the

left and the right end of this interval. It turns out, that

both these functions preserve the order. In the consequence,

49

Andrzej Karbowski

the algorithm of the Lagrange multiplier iteration of the

form:

pi :=

{

r i = 1

γRi(p)+ (1− γ)Ri(p) i = 2,3, . . . ,n
(43)

is equivalent to (38) for every γ ∈ [0,1] and of course also

convergent in a totally asynchronous version [4].

If it is not difficult to calculate the intervals Ri(p), i =
1, . . . ,n, one may propose another algorithm, which is con-

vergent under the partial asynchronism assumptions [4, 9].

In this algorithm the ith coordinate is changed due to the

iteration:

pi := γ · pi +(1−γ) arg min
ξ∈Ri(p)

|ξ−pi| i = 1,2,3, . . . ,n (44)

with 0 < γ < 1. The computational experiments [9] showed,

that this algorithm is considerably faster than the algo-

rithm (43).

3. The optimization of flows

in multicommodity networks

with contracted transmission rates

for virtual connections

Now we will consider a more complicated situation, where

from the network we expect not only the transport of the

total volume of traffic, from all sources to all destination

nodes, but also the guarantees on the flow between given

pairs of nodes. So we will deal with networks which

actually provide virtual connections, in other words with

virtual-circuit data networks.

We define a set W of origin-destination pairs and assume,

that for every connection w = (s,d), s,d ∈ N, s 6= d the

total flow rw may be split to several paths Pw. We also

assume, that the sets Pw for different w are disjoint. We

will denote by Ap the set of all arcs (links) belonging to

(i.e., forming) the path p.

Let xp be the flow through a particular path p ∈ Pw.

According to our assumptions, the flow fi j through an

arc (i, j) equals:

fi j = ∑
p∈Pi j

xp , (45)

where Pi j =
{

p : (i, j) ∈ Ap

}

is the set of all paths travers-

ing arc (i, j). Denoting, as before, by ai j(fi j) the cost of

assuring the flow fi j in the arc (i, j), we may formulate the

optimization problem as:

min
x

[

z(x) = ∑
(i, j)∈A

ai j(fi j) = ∑
(i, j)∈A

ai j

(

∑
p∈Pi j

xp

)]

, (46)

∑
p∈Pw

xp = rw, ∀w ∈W , (47)

xp ≥ 0, ∀p ∈ Pw, ∀w ∈W . (48)

It turns out [4, 10], that the optimal distribution of path

flows may be obtained by distributed partially asynchronous

iterations of path flows xp, grouped with respect to the

realized connections w. The so-called “minimum first-

derivative length” (MFDL) principle is applied. It says,

that we should allocate more traffic to this path from the

set Pw, for which the partial derivative of the cost func-

tion ∑(i, j)∈Ap

∂ai j

∂xp
is minimal. Applying the Taylor expan-

sion series, it can be easily proved, that it guarantees for

small amounts of shifted flow the decrease of the total cost.

The assessment of MFDL path may be performed locally

for every connection, that is in a distributed way, and asyn-

chronously.

Since the information on flows in different arcs (i, j) ∈ Ap

for p ∈ Pw comes from different times (e.g., the data con-

cerning closer nodes is more recent) the wth processor,

which calculates path flows of the wth connection, actually

uses an estimate f̃ w
i j (t) of these flows in some time window

before the time of calculations t:

f̃ w
i j (t) =

t

∑
τ=t−B

ηw
i j (t,τ) fi j(τ) , (49)

where fi j(τ) is the actual flow at time τ in the arc (i, j),
B is the length of the time window, and ηw

i j(t,τ) are (usually

unknown) nonnegative coefficients such that:

t

∑
τ=t−B

ηw
i j(t,τ) = 1 . (50)

Let us denote the estimate of the derivative of the cost of

the flow along the path p∈ Pw calculated at time t by λp(t),
that is:

λp(t) = ∑
(i, j)∈Ap

a
′

i j(f̃ w
i j (t)) (51)

and the index of the MFDL path by pm, that is:

λpm(t) = min
p∈Pw

λp(t) . (52)

In the general model it is assumed, that flows are not

changed immediately and two phases are distinguished: the

calculation of desired flows x̄p and their realization xp. Ac-

cording to this model, the new (actual) routing xp(t + 1),
p∈Pw is determined as a convex combination of the desired

routing x̄p(t) and the current one xp(t):

xp(t +1) = βp(t) x̄p(t)+ (1−βp(t))xp(t), p ∈ Pw , (53)

where 0 < β < βp(t)≤ 1 are generally unknown coefficients

reflecting a smooth (with geometric rate) movement from

the current to the desired routing. Of course whichever

they are, the transmission rate constraints (47) have to be

satisfied.

50

Distributed, asynchronous algorithms for network control with contracted flow rates – a review

The desired flows x̄p for all paths in the connection w are

calculated differently for the MFDL path and for the re-

maining ones. For paths p 6= pm the following formula is

used:

x̄p(t) = max

{

0,xp(t)−
γ

Hp(t)

(

λp(t)−λpm(t)

)}

, (54)

where γ > 0 is a stepsize and Hp(t) is an estimate of the

second derivative length of path p

Hp(t) = ∑
(i, j)∈Ap

a
′′

i j(f̃ w
i j) .

Afterwards, for the MFDL path the desired flow is calcu-

lated from the expression:

x̄pm(t) = rw − ∑
p∈Pw,p 6=pm

x̄p(t) . (55)

It may be proved, that there exists some γ0(B) such that for

0 < γ < γ0(B) the described algorithm implemented asyn-

chronously converges, delivering the minimum total cost of

transmission z(x). Luo and Tseng [8] showed, that when

the cost function ai j (e.g., the expected delay) on each link

is a strictly convex function on the link flow, the sequence

generated by this algorithm converges in the space of path

flows at a linear rate.

It is possible to apply instead of (54) and (55) another

scaled gradient algorithm:

x̄w(t + 1) =
[

x̄w(t)− γM−1
w λw(t)

]+

Mw(t)
, (56)

where x̄w, λw are vectors formed of components x̄p, λp

for p ∈ Pw, Mw(t) is a symmetric positive definite matrix

(usually it is an estimate of the Hessian matrix ∂ 2z
∂x2

w
, and the

algorithm (56) is an approximation of the projected Newton

method), [.]+
Mw(t)

denotes the projection on the simplex

{

xw| ∑
p∈Pw

xp = rw and xp ≥ 0,∀p ∈ Pw

}

(57)

with respect to the norm ||xw||Mw(t) =
(

x
′

wMw(t)xw

) 1
2
.

However, since this algorithm takes into account the cur-

rent value of the desired flows x̄w(t) instead of the current

value of the actual flows xw(t) one may expect that it will be

slower in the adaptation to sudden changes in the problem

data rw. Surprisingly, the replacement in Eq. (56) x̄w(t)
with xw(t) destroys the descent property and the conver-

gence of the algorithm [4].

Recently Elwalid et al. [5] noticed, that the above scheme

may be successfully adapted to Internet traffic engineering

in multiprotocol label switching (MPLS) networks. They

introduced two changes:

• They do not distinguish between the actual xp(t) and

the desired x̄p(t) source rates, that is a new rate vector

is calculated from the formula:

xw(t + 1) = [xw(t)− γλw(t)]+ , (58)

where [.]+ denotes the projection on the feasible

space Eq. (57) with respect to the Euclidean norm.

The justification is, that if one is only dealing with

IP datagrams it is reasonable to assume that each

ingress node can shift its traffic among the label

switched paths available to it immediately after each

update.

• They relax the assumption that at time t each source

has available the current first derivative lengths

Eq. (51) and uses it in place of the gradient in the

update algorithm. Instead, they assume, that at

time t, the source may only have outdated first deriva-

tive lengths. Moreover, the source uses a weighted

average over several past lengths in the update algo-

rithm. That is, the price used in algorithm (58) is

calculated in the following way:

λp(t) =
t

∑
τ=t−B

∑
(i, j)∈Ap

ρw
i j(t,τ)a

′

i j(f̃ w
i j (τ)) , (59)

where f̃i j(τ) is an estimate of flow in the arc (i, j) cal-

culated at time τ Eq. (49), B is the length of the time

window, and ρw
i j(t,τ) are (usually unknown) nonneg-

ative coefficients such that:

t

∑
τ=t−B

ρw
i j(t,τ) = 1 . (60)

This is because, in the distributed and decentralized

implementation of the algorithm, the source can only

estimate the first derivative lengths through noisy

measurement.

Despite these differences, stability of this algorithm (cal-

led MATE – from multipath adaptive traffic engineering)

in [5] has been established using the same techniques as

in [4, 10].

4. Conclusions

All presented distributed, asynchronous optimization meth-

ods for data networks management may be interesting

to network operators. For mass client market traffic bal-

ance routing (see Section 2) may be sufficient. For more

demanding users: state services, governmental institu-

tions, big companies, banks, etc., the model with guar-

anteed connection rates (see Section 3) should be ap-

plied. While in the first case prices, i.e., Lagrange multipli-

ers, are only some internal indicators guiding the network

towards the optimum and the balance of resources and de-

mands, without the monetary consequences, in the second

case they may be more useful. Namely, it is possible to use

them directly to calculate online the cost of high-quality

connections or to draw up a new price list for future SLAs.

51

Andrzej Karbowski

References

[1] M. S. Bazaraa, H. D. Sherali, and C. M. Shetty, Nonlinear Program-

ming: Theory and Algorithms. New York [etc.]: Wiley, 1993.

[2] P. Beraldi, F. Guerriero, and R. Musmanno, “Parallel algorithms

for solving the convex minimum cost flow problem”, Comput. Opt.

Appl., vol. 18, pp. 175–190, 2001.

[3] D. P. Bertsekas, Network Optimization: Continuous and Discrete

Models. Belmont: Athena Scientific, 1998.

[4] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed Com-

putation: Numerical Methods. Belmont: Athena Scientific, 1997.

[5] A. Elwalid, C. Jin, S. Low, and I. Widjaja, “MATE: multipath

adaptive traffic engineering”, Comput. Netw., vol. 40, issue 6,

pp. 695–709, 2002.

[6] W. Findeisen, F. N. Bailey, M. Brdyś, K. Malinowski, and A. Woź-

niak, Control and Coordination in Hierarchical Systems. Chich-

ester [etc.]: Wiley, 1980.

[7] A. Karbowski, “Distributed asynchronous algorithms in the Inter-

net – new routing and traffic control methods”, J. Telecomm. Inform.

Technol., no. 3, pp. 29–36, 2005.

[8] Z.-Q. Luo and P. Tseng, “On the rate of convergence of a distributed

asynchronous routing algorithm”, IEEE Trans. Automat. Contr.,

vol. 39, issue 5, pp. 1123–1129, 1994.

[9] P. Tseng, D. P. Bertsekas, and J. N. Tsitsiklis, “Partially asyn-

chronous algorithms for network flow and other problems”, SIAM

J. Contr. Opt., vol. 28, pp. 678–710, 1990.

[10] J. N. Tsitsiklis and D. P. Bertsekas, “Distributed asynchronous

optimal routing in data networks”, IEEE Trans. Automat. Contr.,

vol. AC-31, no. 4, pp. 325–332, 1986.

Andrzej Karbowski received

M.Sc. degree in electronic en-

gineering (specialization auto-

matic control) from Warsaw

University of Technology (Fac-

ulty of Electronics) in 1983. He

received Ph.D. in 1990 in auto-

matic control and robotics. He

works as adjunct both at Re-

search and Academic Computer

Network (NASK) and at the

Faculty of Electronics and Information Technology (at the

Institute of Control and Computation Engineering) of War-

saw University of Technology. His research interests con-

centrates on data networks management, optimal control in

risk conditions, decomposition and parallel implementation

of numerical algorithms.

e-mail: A.Karbowski@ia.pw.edu.pl

Research and Academic Computer Network (NASK)

Wąwozowa st 18

02-796 Warsaw, Poland

Institute of Control and Computation Engineering

Warsaw University of Technology

Nowowiejska st 15/19

00-665 Warsaw, Poland

52

