PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Fair and efficient network dimensioning with the reference point methodology

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The dimensioning of telecommunication networks that carry elastic traffic requires the fulfillment of two conflicting goals: maximizing the total network throughput and providing fairness to all flows. Fairness in telecommunication network design is usually provided using the so-called max-min fairness (MMF) approach. However, this approach maximizes the performance of the worst (most expensive) flows which may cause a large worsening of the overall throughput of the network. In this paper we show how the concepts of multiple criteria equitable optimization can be effectively used to generate various fair and efficient allocation schemes. We introduce a multiple criteria model equivalent to equitable optimization and we develop a corresponding reference point procedure for fair and efficient network dimensioning for elastic flows. The procedure is tested on a sample network dimensioning problem for elastic traffic and its abilities to model various preferences are demonstrated.
Rocznik
Tom
Strony
21--30
Opis fizyczny
Bibliogr. 23 poz., rys.
Twórcy
autor
autor
  • Institute of Control and Computation Engineering, Warsaw University of Technology Nowowiejska st 15/19, 00-665 Warsaw, Poland, wogrycza@ia.pw.edu.pl
Bibliografia
  • [1] D. Bertsekas and R. Gallager, Data Networks. Englewood Cliffs: Prentice-Hall, 1987.
  • [2] T. Bonald and L. Massoulie, “Impact of fairness on Internet performance”, in Proc. ACM Sigm., Cambridge, USA, 2001, pp. 82–91.
  • [3] R. Denda, A. Banchs, and W. Effelsberg, “The fairness challenge in computer networks”, in Quality of Future Internet Services, LNCS. Berlin: Springer-Verlag, 2000, vol. 1922, pp. 208–220.
  • [4] J. Jaffe, “Bottleneck flow control”, IEEE Trans. Commun., vol. 7, pp. 207–237, 1980.
  • [5] F. Kelly, A. Mauloo, and D. Tan, “Rate control for communication networks: shadow prices, proportional fairness and stability”, J. Oper. Res. Soc., vol. 49, pp. 206–217, 1997.
  • [6] M. M. Kostreva and W. Ogryczak, “Linear optimization with multiple equitable criteria”, RAIRO Oper. Res., vol. 33, pp. 275–297, 1999.
  • [7] M. M. Kostreva, W. Ogryczak, and A. Wierzbicki, “Equitable aggregations and multiple criteria analysis”, Eur. J. Oper. Res., vol. 158, pp. 362–367, 2004.
  • [8] A. Lewandowski and A. P. Wierzbicki, Aspiration Based Decision Support Systems – Theory, Software and Applications. Berlin: Springer, 1989.
  • [9] H. Luss, “On equitable resource allocation problems: a lexicographic minimax approach”, Oper. Res., vol. 47, pp. 361–378, 1999.
  • [10] A. W. Marshall and I. Olkin, Inequalities: Theory of Majorization and Its Applications. New York: Academic Press, 1979.
  • [11] J. Mo and J. Walrand, “Fair end-to-end window-based congestion control”, IEEE/ACM Trans. Netw., vol. 8, pp. 556–567, 2000.
  • [12] W. Ogryczak, Wielokryterialna optymalizacja liniowa i dyskretna. Modele preferencji i zastosowania do wspomagania decyzji. Warszawa: Wydawnictwa Uniwersytetu Warszawskiego, 1997 (in Polish).
  • [13] W. Ogryczak and T. Śliwiński, “On equitable approaches to resource allocation problems: the conditional minimax solution”, J. Telecommun. Inform. Technol., no. 3, pp. 40–48, 2002.
  • [14] W. Ogryczak, T. Śliwiński, and A. Wierzbicki, “Fair resource allocation schemes and network dimensioning problems”, J. Telecommun. Inform. Technol., no. 3, pp. 34–42, 2003.
  • [15] W. Ogryczak and A. Tamir, “Minimizing the sum of the k largest functions in linear time”, Inform. Proces. Lett., vol. 85, pp. 117–122, 2003.
  • [16] M. Pióro and D. Medhi, Routing, Flow and Capacity Design in Communication and Computer Networks. San Francisco: Morgan Kaufmann, 2004.
  • [17] J. Rawls, The Theory of Justice. Cambridge: Harvard University Press, 1971.
  • [18] H. Steinhaus, “Sur la division pragmatique”, Econometrica, vol. 17, pp. 315–319, 1949.
  • [19] R. E. Steuer, Multiple Criteria Optimization: Theory, Computation and Applications. New York: Wiley, 1986.
  • [20] A. Tang, J. Wang, and S. H. Low, “Is fair allocation always inefficient”, in IEEE INFOCOM, Hong Kong, China, 2004, vol. 1, pp. 35–45.
  • [21] A. P. Wierzbicki, “A mathematical basis for satisficing decision making”, Math. Modell., vol. 3, pp. 391–405, 1982.
  • [22] A. P. Wierzbicki, M. Makowski, and J. Wessels, Eds., Model Based Decision Support Methodology with Environmental Applications. Dordrecht: Kluwer, 2000.
  • [23] R. R. Yager, “On ordered weighted averaging aggregation operators in multicriteria decision making”, IEEE Trans. Syst., Man Cybern., vol. 18, pp. 183–190, 1988.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT8-0001-0004
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.