Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Konferencja
Solid Mechanics Conference (36 ; 9-12.09.2008 ; Gdańsk, Poland)
Języki publikacji
Abstrakty
We analyze the relation between Géry de Saxcé's bipotentials representing non-associated constitutive laws and Fitzpatrick's functions representing maximal monotone multifunctions. We illustrate by two examples (one linear and monotone, the other non-linear and non-monotone) the fact that Fitzpatrick's representation coming from convex analysis provides a constructive method to discover the "best" bipotential modelling of a given Implicit Standard Material.
Czasopismo
Rocznik
Tom
Strony
325--340
Opis fizyczny
Bibliogr. 33 poz.
Twórcy
autor
autor
autor
autor
autor
- Solid Mechanics Laboratory, UMR CNRS 6610 Poitiers University, France
Bibliografia
- 1. P.J. ARMSTRONG, C.O. FREDERICK, A Mathematical Representation of the Multiaxial Bauschmger Effects, C.E.G.B. Report RD/B/N 731, 1966.
- 2. S. BARTZ, H.H. BAUSCHKE, J.M. BORWEIN, S. REICH, X. WANG, Fitzpatrick function, cyclic monotonicity and Rockafellar antiderivative, Nonlinear Analysis, 66, 1198-1223, 2007.
- 3. J.M. BORWEIN, A.S. LEWIS, Convex Analysis and Nonlinear Optimization - Theory and Examples, CMS Books in Mathematics, Springer, New York 2000.
- 4. J.M. BORWEIN, Q. J. ZHU, Techniques of Variational Analysis, CMS Books in Mathematics, Springer Science & Business Media, New York 2005.
- 5. M. BULIGA. G. DE SAXCE, C. VALLEE, Existence and construction of bipotentials for graphs of multivalued laws, J. Convex Anal,, 15, issue 1, 87-104, 2008,
- 6. O. DEBORDES, B. MAYROLES, On the, theory and computation of elasto-plastic structures at plastic shakedown [in French], Journal de Mecanique, 15, issue 1, 1-53, 1976.
- 7. S. FlTZPATKU,K, He presenting monotone operators by convex functions, Work-shop/Minieuiticrencc on Functional Analysis and Optimization (Canberra, August 8-24, 19S8), Proceedings of the Centrr f< r Mathematical Analysis of the Australian National University, S.P. FiTZPATKiCK, .I.R. GILES [eds.], Canberra, Australia, 20, 59-65, 1988.
- 8. R. FLETCHER, S t"nn-definite matrix constraints in optimization, SI AM J. Control and Optimization, 23, issue 4, 493 513, 1985.
- 9. B. HALPMEN, N.Q. SON, On the generalized standard materials [in French], Journal de Mecanique, 14, 39-63, 1975,
- 10. Q.-C, HE, C. VALLEE, C. LERINTIU, Explicit expressions for the plastic normality-flow rule associated, to the Tresca yield criterion, Z. Angew. Math. Phys., 56, issue 2, 357-366, 2005.
- 11. N.J. HiGHAM, Computing the polar decomposition - with applications, SI AM J. Sci, Stat. Comput., 7, issue 4, 1160-1174, 1986.
- 12. N.J, HiGHAM, Computing a Nearest Symmetric Positive Semidefinite Matrix, Linear Algebra and its Applications, 103, 103-118, 1988.
- 13. R. HILL, Constitutive inequalities for isotropic elastic solids under finite strain, Proc. Roy, Soc. London, Series 314, 457-472, 1970.
- 14. J.B. HIRIART-URRUTY, Optimization and Convex Analysis [in French], Collection Math-ematiques, Paris, Presses Universitaires de France, 1998.
- 15. J. LEMAITRE, Formulation and identification of damage kinetic constitutive equation, in Continuum Damage Mechanics, Theory and Application, edited by Krajcinovic et al.. International Centre for Mechanical Sciences, CISM Courses and Lectures, Nr. 295, Springer, New York, 1987.
- 16. J. LEMAITRE, J.L. CHABOCHE, Mechanics of Solid Materials, Cambridge University Press, 1990.
- 17. A,S, LEWIS, The mathematics of eigenvalue optimization, Mathematical Programming, 97, 155 176, 2003.
- 18. J.E, MARTINEZ-LEGAZ, B.F. SVAITER, Monotone Operators Representable by l.s.c. Convex Functions, Set-Valued Analysis, 13, 21-46, 2005.
- 19. J.J. MOREAU, Dual convex functions and proximal points in a Hilbert space [in French], CRAS, Paris, 255, 2897-2899, 1962.
- 20. J.J. MOREAU, Proximity and. duality in a Hilbert space [in French], Bulletin de la Societe Mathematique de France, 93, 273-299, 1965.
- 21. J.J. MOREAU, Application of convex analysis to the treatment of elasto-plastic systems, [in:] P. GERMAIN et al. [Eds.], Lecture Notes in Mathematics, Nr. 503, Berlin, Springer, 1976.
- 22. J.J. MOREAU, Convex functional [in French], Istituto poligrafico e zecca dello stato S.p.A., Roma 2003.
- 23. R.T. ROCKAPELLAR, Characterization of the sub differential of convex functions, Pacific Journal of Mathematics, 17, 497 510, 1966.
- 24. G. DE SAXCE, Z.Q. FENG, New Inequation and Functional for Contact with Friction, International Journal Mechanics of Structures and Machines, 19, issue 3, 301 325, 1991.
- 25. G. HE SAXCE, A generalization of Fench.el's inequality and, its applications to the constitutive laws |in French], CRAS, Paris, serie II, 314, 125 129, 1992.
- 26. G, I., SAXCE, L. BOUSSHINE, Implicit Standard Materials, [in:] Inelastic Behaviour of Structures Under Variable Repeated Loads Direct Analysis Methods, D. WEICHERT, G, MAIER |Fds.|, International Centre for Mechanical Sciences, CISM Courses and Lectures, Nr, 132, Springer, Wien, New York, 2002.
- 27. O. VALLEE, M. H.JIA.J, D. FORTUNE, G. DE SAXCE, Generalized Legcndre Fenchel transformation, [in:| Complementarity, duality and symmetry in nonlinear mechanics, Adv. Mcch. Math., Kluwer Acad. Publ., Boston, MA, 6, 289 311, 2004.
- 28. C. VALLEE, C. LERINTIH, D. FORTUNE, M. BAN, G. DE SAXCE, Hill's bipotentiai in New trends in continuum mechanics, Theta Scr. Adv. Math., Theta, Bucharest, 3, 339 351, 2005,
- 29. C. VALLEE, Q.-C. HE, C. LERINTIU, Convex analysis of the eigenvalues of a 3D second-order symmetric tensor, .J. Elasticity, 83, issue 2, 191 204. 2006.
- 30. C. VALLEE, V. RADULESCU, An infinite dimensional version of the Schur convexity property and applications. Anal. Appl., Singapore, 5, issue 2, 123 136, 2007.
- 31. C. VALLEE, D. FORTUNE, C. LERINTTU, Subdifferentml of the largest eigenvalue of a symmetrical matrix. Application of direct projection methods. Anal. Appl., Singapore, 6, issue 1, 99 112, 2008.
- 32. K.G. WOODCATE, Least-Squares Solution of F = PG Over Positive Semidefimte Symmetric P, Linear Algebra and its Applications, 245, 171 190, 1996.
- 33. C. ZALINESCU, Convex analysis in general vector spaces. World Scientific, Singapore 2002.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT7-0016-0041