PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A multi-grain model for migration recrystallization in polar ice

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Konferencja
Solid Mechanics Conference (36 ; 9-12.09.2008 ; Gdańsk, Poland)
Języki publikacji
EN
Abstrakty
EN
In the paper a multi-grain model for a migration recrystallization phenomenon in polar ice is presented. A single crystal of ice is treated as a transversely isotropic and incompressible medium which deforms by viscous creep. The anisotropic viscous behaviour of the ice crystal is described by a constitutive law that includes three microscopic viscosity parameters, and the macroscopic behaviour of the polycrystal is derived by adopting the Taylor-Voigt approximation of the velocity gradient homogeneity in the material. It is assumed that recrystallize, that is gradually disappear, these crystals which are most stressed, and at their expense new crystals are nucleated with the orientations that enhance the deformation of the polycrystal. The model predictions are illustrated by results of numerical simulations of simple ?ows, showing the evolution of the oriented structure of ice and the variation of macroscopic viscosities with increasing strains.
Rocznik
Strony
259--282
Opis fizyczny
Bibliogr. 22 poz.
Twórcy
  • Institute of Hydro-Engineering, Polish Academy of Sciences Kościerska 7, 80-328 Gdańsk, Poland, rstar@ibwpan.gda.pl
Bibliografia
  • 1. R.B. ALLEY, Flow-law hypotheses for ice-sheet modelling, J. Glaciol., 38, 129, 245-256, 1992.
  • 2. N. AZUMA, A. HIGASHI, Formation processes of ice fabric pattern in ice sheets, Ann. Glaciol., 6, 130-134, 1985.
  • 3. W.F. BUDD, T.H. JACKA, A review of ice rheology for ice sheet modelling, Cold Reg. Sci. Technol., 16, 2, 107-144, 1989.
  • 4. O. CASTELNAU, P. DUVAL, R.A. LEBENSOHN, G.R. CANOVA, Viscoplastic modeling of texture development in poly crystalline ice with a self-consistent approach: Comparison with bound estimates, J. Geophys. Res., 101, B6, 13,851-13,868, 1996.
  • 5. S. DE LA CHAPELLE, O. CASTELNAU, V. LIPENKOV, P. DUVAL, Dynamic recrystallization and texture development in ice as revealed by the study of deep ice cores in Antarctica and Greenland, J. Geophys. Res., 103, B3, 5091-5105, 1998.
  • 6. P. DUVAL, Creep and fabric of poly crystalline ice under shear and compression, J. Glaciol., 27, 95, 129-140, 1981.
  • 7. P. DUVAL, L. ARNAUD, O. BRISSAUD, M. MONTAGNAT, S. DE LA CHAPELLE, Deformation and recrystallization processes of ice from polar ice sheets, Ann. Glaciol., 30, 83-87, 2000.
  • 8. P. DUVAL, O. CASTELNAU, Dynamic recrystallization of ice in polar ice sheets, J. Phys. IV, 5, C3, 197-205, 1995.
  • 9. S.H. FARIA, Creep and recrystallization of large poly crystalline masses. III. Continuum theory of ice sheets, Proc. R. Soc. Lond., A 462, 2073, 2797-2816, 2006.
  • 10. S.H. FARIA, G.M. KREMER, K. HUTTER, On the inclusion of recrystallization processes in the modeling of induced anisotropy in ice sheeets: a thermodynarnicist's point of view, Ann. Glaciol., 37, 29-34, 2003.
  • 11. S.H. FARIA, D. KTITAREV, K. HUTTER, Modelling evolution of anisotropy in fabric and texture of polar ice, Ann. Glaciol., 35, 545-551, 2002.
  • 12. O. GAGLIARDINI, J. MEYSSONNIER, Analytical derivations for the behavior and fabric evolution of a linear orthotropic ice polycrystal, J. Geophys. Res., 104, B8, 17,797-17,809, 1999.
  • 13. G. GODERT, K. HUTTER, Induced anisotropy in large ice shields: Theory and its homog-enization, Continuum Mech. Thermodyn., 10, 5, 293-318, 1998.
  • 14. A.J. Gow, D.A. MEESE, R.B. ALLEY, J.J. FITZPATRICK, S. ANANDAKRISHNAN, G.A. WOODS, B.C. ELDER, Physical and structural properties of the Greenland Ice Sheet Project 2 ice core: A review, J. Geophys. Res., 102, C12, 26,559-26,575, 1997.
  • 15. D. KTITAREV, G. GODERT, K. HUTTER, Cellular automaton model for recrystallization, fabric, and texture development in polar ice, J. Geophys. Res., 107, B8, EPM 5, 2002.
  • 16. J. MEYSSONNIER, A. PHILIP, A model for tangent viscous behaviour of anisotropic polar ice, Ann. Glaciol, 23, 253-261, 1996.
  • 17. L.W. MORLAND, Influence of lattice distortion on fabric evolution in polar ice, Continuum Mech. Thermodyn., 14, 1, 9-24, 2002.
  • 18. R. STAROSZCZYK, A uniform strain, discrete-grain model for evolving anisotropy of poly-crystalline ice, Arch. Mech., 54, 2, 103-126, 2002.
  • 19. R. STAROSZCZYK, Constitutive Modelling of Creep Induced Anisotropy of Ice, IBW PAN Publishing House, Gdansk, 2004.
  • 20. R. STAROSZCZYK, L. W. MORLAND, Strengthening and weakening of induced anisotropy in polar ice, Proc. R. Soc. Lond., A 457, 2014, 2419-2440, 2001.
  • 21. T. THORSTEINSSON, J. KIPFSTUHL, H. MILLER, Textures and fabrics in the GRIP ice core, J. Geophys. Res., 102, C12, 26,583-26,599, 1997.
  • 22. C.J. VAN DER VEEN, I.M. WHILLANS, Development of fabric in ice, Cold Reg. Sci. Tech-nol., 22, 2, 171-195, 1994.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT7-0016-0038
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.