Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The development of replacement material for human articular cartilage exhibiting similar mechanical properties as the native tissue is a problem of high actuality in biomeclicine. In the present work a new condensed collagen material is investigated. The study aims at developing a mechanical model especially adapted to this particular collagen material. For this purpose, a viscoelastic-diffusion (VED) model is proposed, accounting for two different diffusion evolutions assumed. Moreover, the need for a gradient material description is discussed in order to cover fabrication influences leading to a variable Young's modulus for the material. On this background, a phe-nornenological law is presented to predict deformation-dependent diffusion behavior and internal reaction forces. Furthermore, the present approach allows a practible identification of diffusion parameters. The theoretical model is implemented into a finite element code and parameters are identified by tension tests. The simulation results are validated experimentally.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
69--87
Opis fizyczny
Bibliogr. 37 poz.
Twórcy
Bibliografia
- 1. W. EIILERS, B. MARKKRT, A linear viscoelastic biphasic model for soft tissues based on ike theory of porous media, Transactions of ASME, 123, 418 424, 2001.
- 2. M.R. DiSiLVESTRO, Q. ZHU, M. WONG, J.S, JURVELIN, J.-K.F. SUH, Biphasic porovis-coelaslic simulation of the unconfined compression of articular cartilage: I - Simultaneous prediction of reaction force and lateral displacement, J. Biomechanical Eng., 123, 191 197, 2001.
- 3. J.J. GARCIA, D.H. CORTES, A nonlinear biphasic viscohyperelastic model for articular cartilage, J. Biomechanics, 39, 2991-2998, 2006.
- 4. J.J. GARCIA, D.H. CORTES, A biphasic viscohyperelastic fibril-reinforced model for arcticular cartilage: Formulation and comparison with experimental data, J. Biomechanics, 40, 1737-1744, 2007.
- 5. W. WILSON, C.C. VAN DONKELAAR, B. VAN RIETBERGEN, R. HUISKES, A fibril-reinforced poroviscoelastic swelling m,odel for articular cartilage, J. Biomechanics, 38, 1195-1204, 2005.
- 6. M.A. HAIDER, R.C. SCHUGART, A numerical method for the continuous spectrum biphasic poroviscoelastic model of articular cartilage, J. Biomechanics, 39, 177-183, 2006.
- 7. F. GUILAK, V.C. Mow, The mechanical environment of the chondrocyte: a biphasic finite element model of cell-matrix interactions in articular cartilage, J. Biornechanics, 33, 1663 1673, 2000.
- 8. X.N. MENG, M.A. LERoux, T.A. LAURSEN, L.A. SETTON, A nonlinear finite element formulation for axisymmetric torsion of biphasic materials, Int. J. Solids and Structures, 39, 879-895, 2002.
- 9. V.C. Mow, S.C. KUEI, W.M. LAI, C.G. ARMSTRONG, Biphasic creep and stress relaxation of articular cartilage in compression: theory and experiments, J. Biomechanical Eng., 102, 73 84, 1980.
- 10. E.M. JOHNSON, W.M. BEEN, Hydraulic permeability of agarose gels, AIChE Journal, 42, 1220 1224,1996.
- 11. W.Y. GU, H. YAO, C.Y. HUANG, H.S. CHEUNG, New insight into deformation-dependent hydraulic permeability of gels and cartilage, and dynamic behavior of agarose gels in confined compression, J. Biomechanics, 36, 593-598, 2003.
- 12. F. LEI, A.Z. SZERI, Inverse analysis of constitutive models: Biological soft tissues, J. Biomechanics, 40, 936-940, 2007.
- 13. J.E. OLBERDING, J.-K.F. SUH, A dual optimization method for the material parameter identification of a biphasic poroviscoelastic hydrogel: Potential application to hypercompliant soft tissues, J. Biomechanics, 39, 2468-2475, 2006.
- 14. M.H. HOLMES, V.C. Mow, The nonlinear characteristic of soft gels and hydrated connective tissues in ultrafiltration, J. Biomechanics, 23, 1145-1156, 1990.
- 15. T. COURTNEY, M.S. SACKS, J. STANKUS, J. GUAN, W.R. WAGNER, Design and analysis of tissue engineering scaffolds that mimic soft tissue mechanical anisotropy, Biomaterials, 27, 3631-3638, 2006.
- 16. G.C. ENGELMAYR JR., G.D. PAPWORTH, S.C. WATKINS, J.E. MAYER JR., M.S. SACKS, Guidance of engineered tissue collagen orientation by large-scale scaffold micro structures, J. Biomechanics, 39, 1819-1831, 2006.
- 17. B.E. KOOP, J.L. LEWIS, A model of fracture testing of soft viscoelastic tissues, J. Biomechanics, 36, 605-608, 2003.
- 18. J.F. RODRIGUEZ, F. CACHO, J.A. BEA, M. DOBLARE, A stochastic-structurally based three-dimensional finite-strain damage model for fibrous soft tissue, J. Mechanics Physics of Solids, 54, 864-886, 2006.
- 19. Y.C. FUNG, Biomechanics: Mechanical properties of living tissue, Springer, New York, 1993.
- 20. G.A. HOLZAPFEL, T.C. GASSER, R.W. OGDEN, A new constitutive framework for arterial wall mechanics and a comparative study of material models, J. Elasticity, 61, 1-48, 2000.
- 21. A.E. EHRET, M. ITSKOV, A polyconvex hyperelastic model for fiber-reinforced materials in application to soft tissues, J. Mater. Sci., 42, 8853-8863, 2007.
- 22. E.J. WEINBERG, M.R. KAAZEMPUR-MOFRAD, A large-strain finite element formulation for biological tissues with application to mitral valve leaflet tissue mechanics, J. Biomechanics, 39, 1557-1561, 2006.
- 23. .I.E. BISCHOFF, Continuous versus discrete (invariant) representations of fibrous structure for modelinig non-linear anisotropic soft tissue behavior, Int. J. Non-Linear Mech., 41, 107 17!), 2000.
- 24. T.F. SAYED, A. MOTA, F. FRATERNALI, M. ORTIZ, A vanaMonal constitutive model for soft biological tissues, J. Biomechanics, in press.
- 25. W. ZHANG, H.Y. CHEN, G.S. KASSAB, A rate-insensitive linear viscoelas tic model for soft tissues, Bioraaterials, 28, 3579-3586, 2007.
- 26. K.Y. VOLOKH, Prediction of arterial failure based on a. micro structural bi-layer fiber-matrix model 'With softening, J. Bioinechanics, 41, 447-453, 2008.
- 27. L. ZHANG, A.Z. SZERI, Transport of neutral solute in articular cartilage: Effect of micro structure, anisotropy, J. Bioinechanics, 41, 430 437, 2008.
- 28. K. MILLER, K. ClllNZEl, Mechanical properties of brain tissue in tension, J. Biomechanics, 35, 483-490, 2002.
- 29. J. LEPETIT, R. FAVIER, A. GRAJALES, P.O. SKJERVOLD, A cryogenic holder for tensile testing of soft biological tissues, J. Bioinechanics, 37, 557-562, 2004.
- 30. J.Z. Wu, R.G. DONG, A.W. SCHOPPER, Analysis of effects of friction on the deformation behavior of soft tissues in unconfined compression tests, J. Bioinechanics, 37, 147-155, 2004.
- 31. C. JAQUEMOUD, K. BRUYERE-GARNIER, M. CORET, Methodology to determine failure characteristics of planar soft tissues using a dynamic tensile test, J. Biomechanics, 40, 468-475, 2007.
- 32. D.-L. Guo, B.-S. CHEN, N.-S. LlOU, Investigating full-field deformation of planar soft tissue under simple-shear tests, J. Biomechanics, 40, 1165-1170, 2007.
- 33. T.J. KLEIN, M. CHAUDHRY, W.C. BAE, R.L. SAH, Depth-dependent biomechanical and biochemical properties of fetal, newborn, and tissue-engineered articular cartilage, .]. Biomechanics, 40, 182-190, 2007.
- 34. H. SARAF, K.T. RAMESH, A.M. LENNON, A.C. MERKLE, J.C. ROBERTS, Mechanical properties of soft human tissues under dynamic loading, J. Bioinechanics, 40, 1960-1967, 2007.
- 35. M.J. KOEHLE, M.L. HULL, A method of calculating physiologically relevant joint reaction forces during forward, dynamic simulations of movement from an existing knee model, J. Bioinechanics, 41, 1143 1146, 2008.
- 36. K. MILLER, Method of testing very soft biological tissues in compression, J. Biomechanics, 38, 153-158, 2005.
- 37. J. BETTEN, Creep Mechanics, Springer, Berlin Heidelberg, New York 2005.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT7-0015-0025