PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Phase transitions in thermoelastic and thermoviscoelastic shells

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Applaying the general non-linear theory of shells undergoing phase transitions, we derive the balance equations along the singular surface curve modelling the phase interface in the shell. From the integral forms of balance laws of linear momentum, angular momentum, and energy as well as the entropy inequality, we obtain the local static balance equations along the curvilinear phase interface. We discuss general forms of the constitutive equations for thermoelastic and thennoviscoelastic shells, as well as propose their simple cases for the linear isotropic shell behaviour. We also derive the thermodynarnic condition allowing one to determine the interface position on the deformed shell miclsurface. The theoretical model is illustrated by the example of thin circular cylindrical shell made of a two-phase elastic material subjected to tensile forces at the shell boundary. The solution reveals the existence of the hysteresis loop whose size depends upon values of several loading parameters. Key words: non-linear shell, phase transition, kinetic equation, quasi-static loading, thermoviscoelasticity, extended cylinder.
Rocznik
Strony
41--67
Opis fizyczny
Bibliogr. 55 poz.
Twórcy
  • South Scientific Center, RASci & South Federal University Milchakova str., 8a, 344090, Rostov on Don, Russia, eremeyev@math.rsu.ru
Bibliografia
  • 1. R. ABEYARATNE, J.K. KNOWLES, Kinetic relations and the propagation of phase boundaries in solids, Arch. Rational Mech. Anal., 114, 2, 119-154, 1991.
  • 2. R. ABEYARATNE, J.K. KNOWLES, Evolution of phase transitions. A continuum theory, Cambridge University Press, Cambridge, New York, Melbourne 2006.
  • 3. A. BEREZOVSKI, G.A. MAUGIN, Stress-induced phase transition front propagation in thermoelastic solids, Eur. J. Mech. A/Solids, 24, 1, 1-21, 2005.
  • 4. A. BEREZOVSKI, G.A. MAUGIN, Moving singularities in thermoelastic solids, Int. J. Fract., 147, 1-4, 191-198, 2007.
  • 5. A. BEREZOVSKI, J. ENGELBRECHT, G.A. MAUGIN, Numerical Simulation of Waves and Fronts in Inhomogeneous Solids, World Scientific, New Jersey 2008.
  • 6. K. B H ATTACH A RYA, Phase boundary propagation in a heterogeneous body, Proc. R. Soc. Lond. A, 455, 1982, 757-766, 1999.
  • 7. K. BHATTACHARYA, Micro structure of Martensite: Why It Forms and How It Gives Rise to the Shape-Memory Effect, Oxford University Press, Oxford 2003.
  • 8. K. BHATTACHARYA, R.D. JAMES, A theory of thin films of martensitic materials with applications to microactuators, J. Mech. Phys. Solids, 47, 35, 531-576, 1999.
  • 9. K. BHATTACHARYA, R.D. JAMES, The material is the machine, Science, 307, 5705, 53-54, 2005.
  • 10. J. CHROŚCIELEWSKI, J. MAKOWSKI, W. PIETRASZKIEWICZ, Statics and Dynamics of Multiplane Shells: Nonlinear Theory and Finite Element Method [in Polish], Wyd. IPPT PAN, seria ,,Biblioteka Mechaniki Stosowanej", Warszawa 2004.
  • 11. S. DALY, G. RAVICHANDRAN, K. BHATTACHARYA, Stress-induced martensitic phase transformation in thin sheets of Nilinol, Acta Materialia, 55, 10, 3593-3600. 2007.
  • 12. V.A. EREMEYEV, W. PIETRASZKIEWICZ, The non-linear theory of elastic shells with phase transitions, J. Blast., 74, 1, 67-86, 2004.
  • 13. V.A. EREMEYEV, W. PIETRASZKIEWICZ, Local symmetry group in the general theory of elastic shells, J. Elast., 85, 2, 125 152, 2006.
  • 14. P. FENG, Q.P. SUN, Experimental investigation on macroscopic domain formation and evolution in poly crystalline NiTi miicrotubmg under mechanical force, J. Mech. Phys. Solids, 54, 8, 1568-1603, 2006.
  • 15. A.13. FREIDIN, L.L. SHARIPOVA, On a model of heterogeneous deformation of elastic bodies by the meclianism of inuliiple appearances of new phase layers, Meccanica, 41, 3, 321-339, 2006.
  • 16. ,J. W. GIBBS, On the equilibrium of heterogeneous substances. Transactions of the Connecticut Academy of Sciences, 3, 108 248, 1875; 343-524, 1875; Reprinted [in:] The Collected Works of J. WU,lard Gibs, Longmans, Green & Co. New York, 55 353, 1928.
  • 17. A.E. GREEN, P.M. NACiim, Non-isothermal theory of rods, plates and shells, Int. J. Solids Struct., 6, 2, 209 244, 1970.
  • 18. A.E. GREEN, P.M. NAC;HIM, On thermal effects in the theory of shells, Proc. R. Soc. London, 365A, 161 190, 1979.
  • 19. M. GRINEELD, Thermodynamics Methods in the Theory of Heterogeneous Systems, Longman, Harlow 1991.
  • 20. M.E. GURTIN, A.I. MURDOCH, A continuum theory of elastic material surfaces, Arch. Rational Mech. Anal, 57, 4, 291 323, 1975.
  • 21. M.E. GURTIN, Therm,omechanics of Evolving Phase Boundaries in the Plane, Clarendon-Press, Oxford 1993.
  • 22. M.E. GURTIN, Configurational Forces as Basic Concepts of Continuum Physics, Springer, Berlin 2000.
  • 23. R.D. JAMES, R. RIZZONI, Pressurized shape memory thin films, J. Elast., 59, 1-3, 399 436, 2000.
  • 24. R.D. JAMES, K.F. HANE, Martensitic transformations and shape-memory materials, Acta Materialia, 48, 1, 197 222, 2000.
  • 25. R. KIENZLER, G. HERRMAN, Mechanics in Material Space with Applications to Defect and Fracure Mechanics, Springer, Berlin 2000.
  • 26. J.K. KNOWLES, Stress-induced phase transitions in elastic solids, Computational Mechanics, 22, 6, 429 436, 1999.
  • 27. V. KONOPIŃSKA, W. PIETRASZKIEWICZ, Exact resultant equilibrium conditions in the non-linear theory of branching and self-intersecting shells, Int. J. Solids Struct., 44, 1, 352 369, 2007.
  • 28. D.C. LAOOUDAS [Ed.], Shape Memory Alloys: Modeling and Engineering Applications, Springer, Berlin 2008.
  • 29. K.C. LE, On kinetics of hysteresis, Continuum Mech. Thermodyri., 18, 6, 335-342, 2007.
  • 30. V.I. LEVITAS Structural changes without stable intermediate state in inelastic material. Part 1. General tliermomechanical and kinetic approaches, Int. J. Plasticity, 16, 78, 805 849, 2000.
  • 31. C. LEXCELLENT, A. VIVET, C. BOUVET, S. CALLOCH, P. BLANC, Experimental'and numerical determinations of the initial surface of phase transformation under biaxial loading in some poly crystalline shape-memory alloys, J. Mech. Phys. Solids, 50, 12, 2717-2735, 2002.
  • 32. A. LIBAI, J.C. SIMMONDS, The Nonlinear Theory of Elastic Shells, 2nd ed., Cambridge, UK 1998.
  • 33. J. LIN, T.J. PENCE, Pulse attenuation by kinetically active phase boundary scattering durrng displacive phase transformations, J. Mech. Phys. Solids, 46, 7, 1183-1211, 1998.
  • 34. J. MAKOWSKI, W. PIETRASZKIEWICZ, Therrnomechanics of shells with singular curves, Zesz. Nauk. IMP PAN, No 528/1487/2002, Gdańsk 2002.
  • 35. G.A. MAUGIN, Material Inhomogeneities in Elasticity, Chapman Hall, London 1993.
  • 36. A.I. MURDOCH, A thermodynamical theory of elastic material interfaces, Q. J. Mech. Appl. Math., 29, 3, 245 274, 1976.
  • 37. A.I. MURDOCH, On the entropy inequality for material interfaces, ZAMP, 27, 599-605, 1976.
  • 38. S.-C. NGAN, L. TRUSKINOVSKY, Thermal trapping and kinetics of martensitic phase boundaries, J. Mech. Phys. Solids, 47, 1, 141-172, 1999.
  • 39. E.A. PIECZYSKA, H. TOBUSHI, S.P. GADAJ, W.K. NOWACKI, Superelastic deformation behaviors based on phase transformation bands in TiNi shape memory alloy, Materials Trans., 47, 3, 670-676, 2006.
  • 40. E.A. PIECZYSKA, S.P. GADAJ, W.K. NOWACKI, H. TOBUSHI, Phase-transformation fronts evolution for stress- and strain-controlled tension tests in TiNi shape memory alloy, Experimental Mechanics, 46, 4, 531-542, 2006.
  • 41. W. PIETRASZKIEWICZ, J. CHRÓŚCIELEWSKI, J. MAKOWSKI, On dynamically and kinematically exact theory of shells, [in:] W. PIETRASZKIEWICZ, C. SZYMCZAK [Eds.], Shell Structures: Theory and Applications, Taylor & Francis, London, 163-167, 2005.
  • 42. W. PIETRASZKIEWICZ, V.A. EREMEYEV, V. KONOPINSKA, Extended non-linear relations of elastic shells undergoing phase transitions, ZAMM, 87, 2, 150-159, 2007.
  • 43. A. ROMANO, Thermodynamics of Phase Transitions in Classical Field Theory, World Scientific, Singapore 1993.
  • 44. P. ROSAKIS, J.K. KNOWLES, Unstable kinetic relations and the dynamics of solid-solid phase transitions, J. Mech. Phys. Solids, 45, 11/12, 2055-2081, 1997.
  • 45. M.M. SCHWARTZ [Ed.], Encyclopedia of Materials, Parts, and Finishes, CRC Press, Boca Raton 2002.
  • 46. L.I. SHKUTIN, Analysis of a,xisymmetnc phase strains in plates and shells, J. Appl. Mech. Techri. Phys., 48, 2, 285 291, 2007.
  • 47. L.I. SHKUTIN, Axisymrnetric deformation of plates and shells with phase tras formations under thermal cycling, J. Appl. Mech. Techn. Phys., 49, 2, 330-335, 2008.
  • 48. J.G. SIMMONDS, The thermodynamical theory of shells: Descent from 3-dimensions without thickness expansions, [in:] E.K. AXELRAD, F.A. EMMERLING [Eds.J, Flexible Shells, Theory and Applications, Springer-Verlag, Berlin, 1—11, 1984.
  • 49. J.G. SIMMONDS, A simple nonlinear thermodynamic theory of arbitrary elastic beams, J. Blast., 81, 1, 51-62, 2005.
  • 50. Q.-P. SUN, Z.-Q. Li, Phase transformation in superelastic NiTi poly crystalline microtubes under tension and torsion - from localization to homogeneous deformation, Int. J. Solids Struct., 39, 13-14, 3797-3809, 2002.
  • 51. C. TRUESDELL, A First Course in Rational Continuum Mechanics [in Russian], Mir, Moscow 1975.
  • 52. C. TRUESDELL, Rational Thermodynamics, Springer, New York at al. 1984.
  • 53. L. TRUSKINOVSKY, A. VAINCHTEIN, Kinetics of martensitic phase transitions: lattice model, SIAM J. Appl. Math., 66, 2, 533-553,.2005.
  • 54. V.A. YEREMEYEV, A.B. FREIDIN, L.L. SHARIPOVA, The stability of the equilibrium of two-phase elastic solids, J. Appl. Math. Mech. (PMM), 71, 1, 61-84, 2007.
  • 55. P.A. ZHILIN, Mechanics of deformable directed surfaces, Int. J. Solids Struct., 12, 9-10, 635 648, 1976.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT7-0015-0024
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.