PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Fluid-structure interaction for large scale complex geometry and non-linear properties of structure

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper fluid-structure interaction, taking into account the nonlinearity of structural models, is concerned. This phenomenon has important influence in many aeronautical applications. The method and developed system is demonstrated on NACA-0012 wing mounting, made of non-linear springs and include structures with non-linear materials, modelled by Neo-Hooke and Mooney Rivlin models, like flexible delta wing. For the first flow the comparison with experiment made in Institute of Aviation Warsaw is presented. For both mentioned above models, the linear and nonlinear analysis are presented and the critical flutter speeds are determined. Finally, aeroelastic simulation of full 123 aircraft configuration presents the capability of used numerical codes to analyze large-scale complex geometries. All computations were carried out in parallel environment for CFD mesh of order of millions tetrahedral elements.
Słowa kluczowe
Rocznik
Strony
3--27
Opis fizyczny
Bibliogr. 40 poz.
Twórcy
autor
autor
Bibliografia
  • 1. P. POSADZY, M. MORZYNSKI, Deliverable D5.2-24 - Final report on functionality of the implemented generic CSM code (Milestone M8), Technical report, Poznan University of Technology, 2004.
  • 2. R. KAMAKOTI, Computational Aeroelasticity Using a Pressure-Based Solver, PhD thesis, University of Florida, 2004.
  • 3. R.L. BISPLINGOFF, H. ASHLEY, R.L. HALFMAN, Aeroelasticity, Addison Wesley, Reading, MA, 1955.
  • 4. S.N. ATLURI, S. SHEN, The meshless local Petrov-Galerkm (MLPG) method: a simple and less-costly alternative to the finite element and, bounduary element method, CMES: Computer Modeling in Engineering and Sciences, 3, 1, 11 52, 2002.
  • 5. C.P. GURUSWAMY, C. BYUN, Fluid-structure interactions using Navier-Stokes flow equations coupled with shell finite clement structures, [in:] 24th Fluid Dynamics Conference, Orlando, FL, July 1993, AIAA-93-3087.
  • 6. R. ROSZAK, Fluid-structure interaction for nonlinear property of structural models, PhD thesis, Poznan University of Technology, 2006.
  • 7. S. PIPERNO, C. FARMAT, B. LARROUTUROU, Partitioned procedures for the transient solution of coupled aroelastic problems Part I: Model problem, theory and two-dimensional application, Computer Methods in Applied Mechanics and Engineering, 124, 1-2, 79-112, 1995.
  • 8. C. FARHAT, M. LESOINNE, N. MAMAN, Mixed Explicit/Implicit Time Integration of Coupled Aeroclastic Problems: Three-field Formulation, Geometric Conservation and Distributed Solution, International Journal for Numerical Methods in Fluids, 21, 807 836, 1995.
  • 9. S. PIPERNO, Explicit/implicit fluid/structure staggered procedures with a structural prediction and fluid subcycling for 21) inviscid aeroelastic simulations. International Journal lor Numerical Methods in Fluids, 25, 1207 1226, 1997.
  • 10. D. SCHWAMHORN, T. GERHOLD, R. HEINRICH, The DLR TAU-Code: Recent Applications in Research and Industry, [in:] Proceedings of ECCOMAS CFD, 2006.
  • 11. C. FARHAT, C. DEGAND, B. KOOBUS, M. LESOINNE, Torsional springs for two-dimensional dynamic unstructured fluid mesh, Comput. Methods Appl. Mech. Engg., 163, 231 245, 1998.
  • 12. C. DEGAND, C. FARHAT, A three-dimensional torsional spring analogy method for unstructured dynamic meshes, Cornput. Struct., 80, 305, 2002.
  • 13. F.J. BLOOM, Consideration on the spring analogy, Int. J. Numer. Methods Fluids, 32, 647 668, 2000.
  • 14. D. ZENG, C.R. ETHIER, A semi-torsional analogy model for updating unstructured meshes in 3D moving Domains, Finite Elem. Anal. Des., 41, 1118-1139, 2005.
  • 15. G.A. MARKOU, Z.S. MOUROUTIS, B.C. CHARMPIS, M. PAPADRAKAKIS, The ortho-semi-torsional (OST) spring analogy method for 3D mesh moving boundary problems, Comput. Methods Appl. Mech. Engg., 196, 747 765, 2007.
  • 16. C.L. BOTTASANO, B. DETOMI, R. SERRA, The ball-vertex method: a new simple analogy method for unstructured dynamic meshes, Comput. Methods Appl. Mech. Engg., 194, 4244 4264, 2005.
  • 17. M. MORZYNSKI, Numerical solution of Navier-Stokes equations by the finite element method, [in:] Proceedings of SYMKOM 87, Compressor and Turbine Stage Flow Path Theory and Experiment, 119 128, 1987.
  • 18. K. APPA, Finite-surf ace spline, Journal of Aircraft, 26, 495 496, 1989.
  • 19. R.L. HARDER, R.N. DESMARIS, Interpolation using surface splines, Journal of Aircraft, 9, 2, 189 191, 1972.
  • 20. C. FARHAT, M. LESOINNE, Two efficient staggered algorithms for the serial and parallel solution of three-dimensional nonlinear transient aeroelastic problems, Comput. Methods Appl. Mech. Erigrg., 182, 499-515, 2000.
  • 21. MpCCI 2.0 User Guide, Technical report.
  • 22. N. MAMAN, C. FARHAT, Matching fluid and structure meshes for aeroelastic computations, Computers and Structures, 54, 4, 779-785, 1995.
  • 23. D. KNUTH, Sorting and Searching. The Art of Computer Programming, Vol. 3, Addison-Wesley, Massachusetts 1973.
  • 24. R. LOHNER, Some useful data structures for the generation of unstructured grids, Applied Numerical. Math, 4, 123 135, 1988.
  • 25. D.J. BENSON, ,J.O. HALLQUIST, A Single surface contact algorithm for the post-buckling analysis of shell structures, Comput. Methods Appl. Mech. Engg., 78, 141-163, 1990.
  • 26. Y. KUO, S.-Y. HWANG, H. Hu, A data structure for fast region searches, IEEE Design and Test of Computers, 6, 5, 20 28, 1989.
  • 27. T. ASANO, M. EDAHIRO, H. IMAI, M. IRI, K. MUROTA, Practical use of bucketing techniques in computational geometry, 1985, 153 195, [in:] G.T. TOUSSAINT [Ed.], Computational Geometry, Vol. 2: Machine Intelligence and Pattern Recognition, North-Holland, Amsterdam.
  • 28. Technology development for aeroelastic simulations on unstructured grids, Fifth E.U. Framework Programme, G4RD-CT-2001-00403, http://cordis.europa.eu.
  • 29. P. POSADZY, The modelling and analysis of aeroelasticiy phenomena in practical flow applications [in Polish], PhD thesis, Poznan University of Technology, 2007.
  • 30. S. PIPERNO, C. FARHAT, Partitioned procedures for the transient solution of coupled aeroelastic problems ~ Part II: energy transfer analysis and three-dimensional applications, Computer Methods in Applied Mechanics and Engineering, 190, 24-25, 3147-3170, 2001.
  • 31. C. FARHAT, M. LESOINNE, P. STERN, S. LANTERI, High performance solution of three-dimensional nonlinear aeroelastic problems via parallel partitioned algorithms: methodology and preliminary results, Advances in Engineering Software, 28, 1, 43-61, 1997.
  • 32. L. FORNASIER, H. RIEGER, U. TREMEL, E. VAN DER WEIDE, Time-Dependent Aeroelastic Simulation of Rapid Manoeuvring Aircraft, AIAA Paper, 949, 2002.
  • 33. D. SZELAG, Z. LORENC, L. FORNASIER, P. POSADZY, A digitally controlled suspension system for the real time generation of the structural nonlinearities in the flutter wind tunnel validation testing, [in:] Proceedings of the International Forum on Aeroelasticity and Structural Dynamics, Munich, Germany 2004.
  • 34. L. Liu, E.H. DOWELL, J.P. THOMAS, A high dimensional harmonic balance approach for an aeroelastic airfoil with cubic restoring forces, Journal of Fluids and Structures, 23, 3, 351-363, 2007.
  • 35. B.D. COLLER, P.A. CHAMARA, Structural non-linearities and the nature of the classic flutter instability, Journal of Sound and Vibration, 277, 4-5, 711-739, 2004.
  • 36. Y. CHEN, J. Liu, Supercritical as well as subcritical Hopf bifurcation in nonlinear flutter systems, Applied Mathematics and Mechanics, 29, 2, 199-206, 2008.
  • 37. B,R. NOACK, K. AFANASIEV, M, MORZYNSKI, G. TADMOR, F. THIELE, A hierarchy of low-dimensional models for the transient and post-transient cylinder wake, J. Fluid Mech., 497, 335 363, 2003.
  • 38. S, MUNTEANU, J. RAJADAS, C. NAM, A, CHATTOPADHYAY, Reduced-order-model approach for aeroelastic analysis involving aerodynamic and structural nonlinearities, AIAA Journal, 43, 3, 560 571, 2005,
  • 39. T, KIM, H, HONG, K.G. BHATIA, G. SENGUPTA, Aeroelastic Model Reduction for Affordable Computational Fluid Dynamics-Based Flutter Analysis, AIAA Journal, 43, 12, 2487, 2005,
  • 40. P. BJORNSSON, H, DANIELSSON, Strength and Creep Analysis of Glued Rubber Foil Timber Joints, Master's thesis, Lund University, Sweden 2005.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT7-0015-0022
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.