Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
A study has been made of the convection of micropolar fluids heated from below in the presence of suspended particles (fine dust) and uniform vertical rotation Omega (0; 0; Omega). The effect of Coriolis forces on the stability is chosen along the direction of the gravitational field. It is found that the presence of coupling between thermal and micropolar effects, rotation parameter and suspended particles may introduce overstability in the system. Using the Boussinesq approximation, the linearized stability theory and normal mode analysis, the exact solutions are obtained for the case of two free boundaries. Graphs have been plotted by giving numerical values to the parameters accounting for rotation Omega (0; 0; Omega) and the dynamic microrotation viscosity kappa and coefficient of angular viscosity gamma' to depict the stability characteristics, for both the cases of stationary convection and overstability. It is found that Rayleigh number for the case of overstability and stationary convection increases with increase in rotation parameters and decreases with increase in micropolar coefficients, for a fixed wave number, showing thereby the stabilizing effect of rotation parameters and destabilizing effect of micropolar coefficients on the thermal convection of micropolar fluids. Thus there is a competition between the stabilizing effect of rotation parameters and destabilizing effect of micropolar coeffcients and the suspended particles. It is also found from the graphs that the Rayleigh number for the case of overstability is always smaller than the Rayleigh number for the case of stationary convection, for a fixed wave number.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
403--419
Opis fizyczny
Bibliogr. 20 poz.
Twórcy
autor
autor
- Department of Mathematics Himachal Pradaesh University Shimla-171005, India, veena_math_hpu@yahoo.com
Bibliografia
- 1. A.C. ERINGEN, Theory of Micropolar Fluids, J. Math. Mech., 16, 1, 1966.
- 2. Y. KAZAKIA, T. ARIMAN, Rheol. Acta 10, 319, 1971.
- 3. A.C. ERINGEN, Theory of Thermomicro Fluids, J. Math. Anal. Appl., 38, 480, 1972.
- 4. S. CHANDRASEKHAR, Hydrodynamic and Hydromagnetic Stability, Dover publication, New York 1961.
- 5. Y. NAKAGAWA, An Experiment on the Inhibition of Thermal Convection by a Magnetic Field, Nature, 175, 417, 1955.
- 6. Y. NAKAGAWA, Experiments on the Inhibition of Thermal Convection by a Magnetic Field, Proc. R. Soc. London A240, 108, 1957.
- 7. D. FULTZ, Y. NAKAGAWA, P.C. FRENZEN, An instance in thermal convection of Eddington's 'overstability', Phys. Rev., 94, 252, 1954.
- 8. G. AHMADI, Stability of a micropolar fluid heated from below, Int. J. Engng. Sci., 14, 8, 1976.
- 9. C. PEREZ-GARCIA, J.M. RUBI, J. CASAS-VAZQEZ, On the Stability of Micropolar Fluids, J. Non-Equilib. Thermodyn., 65, 6, 1981.
- 10. H.N.W. LEKKERKERKER, J. Physique, 38, L-277, 1977.
- 11. H.N.W. LEKKERKERKER, Thermodynamic Analysis of the Oscillatory Convective Instability in a Binary Liquid Mixture, Physica, 93A, 307, 1978.
- 12. R. BRADLEY, Overstable Electroconvective Instabilities, Q. J. Mech. Appl. Math., 31, 383, 1978.
- 13. W.G. LAIDLAW, Oscillatory Instabilities of Nematic Liquid Crystals in Electric and Magnetic Fields, Phys. Rev., A20, 2188, 1979.
- 14. J. BOUSSINESQ, Theorie Analytique de la Chaleur 2, 172, 1903 Gauthier-Villars, Paris.
- 15. SAFFMAN, On the Stability of a Laminar Flow of a Dusty Gas, J. Fluid Mech., 13, 120-128.
- 16. R.C. SHARMA, K. PRAKASH, S.N. DUBE, Effect of Suspended Particles on the Onset of Benard Convection in Hydromagnetics, Acta Physica Hungarica, 40, 3-10, 1976.
- 17. R.C. SHARMA, P. KUMAR Thermal Convection of Micropolar Fluid in the Presence of Suspended Particles, Studia Geotechnica et Mechanica (Poland) XXIV No. 3-4, 53-63, 2002.
- 18. C. PEREZ-GARCIA, J.M. RUBI, On the possibility of over stable motions of micropolar fluids heated from below, Int. J. Engng. Sci., 20, 873, 1982.
- 19. A.C. ERINGEN, Microcontinuum Field Theories. II Fluent Media, Springer, New York 2001.
- 20. G. LUKASZEWICZ, Micropolar Fluids: Theory and Application, Birkhauser, Basel 1999.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT7-0014-0016