PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Weak solutions to anti-plane boundary value problems in a linear theory of elasticity with microstructure

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper we formulate the interior and exterior Dirichlet and Neumann boundary value problems of anti-plane rnicropolar elasticity in a weak (Sobolev) space setting, we show that these problems are well-posed and the corresponding weak solutions depend continuously on the data. We show that the problem of torsion of a rnicropolar beam of (non-smooth) arbitrary cross-section can be reduced to an interior Neumann boundary value problem in antiplane micropolar elasticity and consider an example which demonstrates the significance of material microstructure.
Rocznik
Strony
519--539
Opis fizyczny
Bibliogr. 21 poz.
Twórcy
autor
autor
autor
  • Department of Civil and Environmental Engineering, Tufts University Medford, Massachusetts 02155, USA
Bibliografia
  • 1. E. COSSERAT, F. COSSERAT, Theorie des corpes deformables, A. Herman et Fils, Paris 1909,
  • 2. A.C, ERINGEN, Linear theory of micropolar elasticity, J. Math. Mech. 15, 909-923, 1966.
  • 3. W. NOWACKI, Theory of asymmetric elasticity, Polish Scientific Publishers, Warsaw 1986.
  • 4. H.C. PARK, R.S. LAKES, Torsion of a micropolar elastic prism of square cross-section, Int. J. Solids, Structures, 23, 485-503, 1987.
  • 5. V.D. KUPRADZE, et al., Three-dimensional problems of the mathematical theory of elasticity and thermoelasticity, North-Holland, Amsterdam 1979.
  • 6. C,O. HORGAN, Anti-plane shear deformations in linear and nonlinear solid mechanics, SIAM Review, 37, 53-81, 1995.
  • 7. C. CONSTANDA, A mathematical analysis of bending of plates with transverse shear deformation, Longman Scientific & Technical, Harlow 1990.
  • 8. P. SCHIAVONE, Integral equation methods in plane asymmetric elasticity, J. Elasticity, 43, 31-43, 1996.
  • 9. S. POTAPENKO, P. SCHIAVONE and A. MIODUCHOWSKI, Anti-plane shear deformations in a linear theory of elasticity with micro structure, J. Appl. Math. Phys., ZAMP, 56, 516-528, 2005.
  • 10. S. POTAPENKO, P. SCHIAVONE and A. MIODUCHOWSKI, On the solution of mixed problems in anti-plane micropolar elasticity, Math. Mech. Solids, 8, 151-160, 2003.
  • 11. S. POTAPENKO, A generalized Fourier approximation in anti-plane micropolar elasticity, J. Elasticity, 81, 159-177, 2005.
  • 12. S. POTAPENKO, Fundamental sequences of functions in the approximation of solutions to mixed boundary-value problems of Cosserat Elasticity, Acta Mech., 177, 61-70, 2005.
  • 13. S. POTAPENKO, P. SCHIAVONE, A. MIODUCHOWSKI, On the solution of the torsion problem in a linear elasticity with micro structure, Math. Mech. Solids, 11, 181-195, 2006.
  • 14. S. POTAPENKO, P. SCHIAVONE, A. MIODUCHOWSKI, Generalized Fourier series solution of torsion of an elliptic beam with micro structure, Appl. Math. Letters, 17, 189-192, 2004.
  • 15. I. CHUDINOVICH and C. CONSTANDA, Variational and potential methods in the theory of bending of plates with transverse shear deformation, Chapman and Hall/CRC, Boca Raton, London, New York, Washington, D.C. 2000.
  • 16. E. SHMOYLOVA, S. POTAPENKO and L. ROTHENBURG, Weak solutions of the interior boundary value problems of plane Cosserat elasticity, J. Appl. Math. Phys., ZAMP, 57, 506-522, 2006.
  • 17. E. SHMOYLOVA, S. POTAPENKO and L. ROTHENBURG, Weak solutions of the exterior boundary value problems of plane Cosserat elasticity, J. Int. Equations Appl. (in press).
  • 18. E. SHMOYLOVA, A. DORFMANN, S. POTAPENKO, Weak solutions for the electrostatic force in atomic force microscopy, J. Appl. Math. Phys., ZAMP (in press).
  • 19. C. MIRANDA, Partial differential equations of elliptic type, Springer-Verlag, Berlin 1970.
  • 20. E. SHMOYLOVA, Boundary integral equation method in elasticity with micro structure, Ph.D. dissertation, University of Waterloo, Waterloo, Canada 2006.
  • 21. R.S. LAKES, Experimental methods for study of Cosserat elastic solids and other generalized continua, [in:] Continuum models for materials with micro-structure, H. MUHLHAUS [Ed.], J. Wiley, New York, 1-22, 1995.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT7-0008-0028
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.