PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Continuous one-dimensional elastic macro-elements as a natural alternative crack detection tool to the spectral finite element method

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the paper the wave method of fault identification in rods, shafts and beams is proposed. This method is based on dynamical models consisting of structural macroelements with continuously distributed inertia!-visco-elastic properties, represented by individual segments of the investigated objects. The fault detection and identification reduces to simulations of diagnostic wave propagation and wave reflections in these models. These simulations are performed directly in time domain by means of analytical solutions of the partial differential equations of motion. In the computational examples, reflected waves were sought in the cracked cantilever rod and beam. These results have been compared with the analogous findings obtained by other authors, using the spectral finite element method. The natural continuous character of the applied elastic macro-elements enables us to apply a straightforward simulation of wave effects, which makes the proposed approach a promising and effective tool for fault identification in various structures and mechanical systems.
Rocznik
Strony
473--499
Opis fizyczny
Bibliogr. 22 poz.
Twórcy
autor
  • Institute of Fundamental Technological Research PAN ul. Swiętokrzyska 21, 00-049 Warsaw, Poland
Bibliografia
  • 1. J.F. DOYLE, Wave propagation in structures, Springer-Verlag, New York 1997.
  • 2. M. KRAWCZUK and W. OSTACHOWICZ, Spectral finite element and genetic algorithm for crack detection in cantilever rod, Key Engineering Materials, 204—205, 241-250, 2001.
  • 3. M. PALACZ and M. KRAWCZUK, Analysis of longitudinal wave propagation in a cracked rod by the spectral element method, Computer and Structures, 80, 1809-1816, 2002.
  • 4. W. OSTACHOWICZ, M. KRAWCZUK and M. PALACZ, Detection of delamination in multilayer composite beams, Key Engineering Materials, 245-246, 483-490, 2003.
  • 5. M. KRAWCZUK, M. PALACZ and W, OSTACHOWICZ, The dynamic analysis of a cracked Timoshenko beam by the spectral element method, Journal of Sound and Vibration, 264, 1139-1153, 2003.
  • 6. W. OSTACHOWICZ, M. KRAWCZUK, M. CARTMELL and M. GILCHRIST, Wave propagation in delaminated beam, Computers and Structures, 82, 475-483, 2004.
  • 7. M. KRAWCZUK, M. PALACZ and W. OSTACHOWICZ, Wave propagation in plate structures for crack detection, Finite Elements in Analysis and Design, 40, 991-1004, 2004.
  • 8. M. KRAWCZUK, M. PALACZ and W. OSTACHOWICZ, Flexural-shear wave propagation in cracked composite beam, Science and Engieering of Composite Materials, 11, 1, 55-67, 2004.
  • 9. A. NAG, D. ROY MAHAPATRA and S. GOPALAKRISHNAN, Identification of delamination in a composite beam using a damaged spectral element, Structural Health Monitoring, 1, 1, 105-126, 2002.
  • 10. T. SZOLC, Dynamic analysis of complex, discrete-continuous mechanical systems [in Polish], Polish Academy of Sciences - IFTR Reports, 2/2003, Habilitational dissertation.
  • 11. R. BOGACZ and T. SZOLC, Nonlinear torsional vibration analysis of the drive systems using one-dimensional elastic waves, Archives of Mechanics, 45, 1, 65-75, 1993.
  • 12. R. BOGACZ, T. SZOLC and H. IRRETIER, An application of torsional wave analysis to turbogenerator rotor shaft response, Trans, of the ASME, Journal of Vibration and Acoustics, 114, 149-153, 1992.
  • 13. T. SZOLC, On the discrete-continuous modeling of rotor systems for the analysis of coupled lateral-torsional vibrations, International Journal of Rotating Machinery, 6, 2, 135-149, 2000.
  • 14. T. SZOLC, Medium frequency dynamic investigation of the railway wheelset-track system using a discrete-continuous model, Archive of Applied Mechanics (Ingenieur Archiv), 68, 1, 30-45, 1998.
  • 15. T. SZOLC, Simulation of bending-torsional-lateral vibrations of the railway wheels et-track system in the medium frequency range, Vehicle System Dynamics, 30, 6, 473-508, 1998.
  • 16. T. SZOLC, Simulation of dynamic interaction between the railway bogie and the track in the medium frequency range, Multibody System Dynamics, 6, 99-122, 2001.
  • 17. T. SZOLC, T. BEDNAREK, I. MARCZEWSKA, A. MARCZEWSKI and W. SOSNOWSKI, Fatigue analysis of the cracked rotor by means of the one- and three-dimensional dynamical model, Proc. of the 7th International Conference on Rotor Dynamics, organized by the IFToMM in Vienna, Sept. 2006, Austria 2006, ISBN 3-200-006889-7, Paper No. 241.
  • 18. L. MEIROVITCH, Dynamics and Control of Structures, John Wiley & Sons, New York 1990.
  • 19. A. PIELORZ, Elastic waves in discrete-continuous mechanical systems [in Polish], Polish Academy of Sciences - IFTR Reports, 21/1992, Habilitational dissertation .
  • 20. W. FLUGGE, Die Ausbreitung von Biegungswellen in Staben, Z. angew. Math. Mech., Bd. 22, 6, 312-318, 1942.
  • 21. W. FLUGGE and E.E. ZAJAC, Bending impact waves in beams, Ing.-Archiv, XXVIII, 59-70, Bd. 1959.
  • 22. W. SZCZESNIAK, Initial conditions in the dynamic investigations of the Timoshenko beam [in Polish], Scientific Reports of the Warsaw University of Technology - Civil Engineering, 108, 99-143, Warsaw 1989.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT7-0008-0026
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.