PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of aggregate structure on fracture process in concrete using 2D lattice model

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Konferencja
Solid Mechanics Conference (35 ; 04-08.09.2006 ; Cracow, Poland)
Języki publikacji
EN
Abstrakty
EN
The 2d lattice model was used to analyse fracture processes in concrete at the meso-level. Concrete was described as a three-phase material (aggregate, interfacial transition zone and cement matrix). The calculations were carried out for concrete specimens subject mainly to uniaxial extension. The effect of the aggregate density investigated, In addition, a deterministic size effect was studied, The advantages and disadvantages of the model were outlined.
Rocznik
Strony
365--384
Opis fizyczny
Bibliogr. 51 poz.
Twórcy
autor
autor
  • Faculty of Civil and Environmental Engineering Gdańsk University of Technology 80-952 Gdańsk-Wrzeszcz, ul Narutowicza 11/12
Bibliografia
  • 1. P. N. ASFERG, P, N. POULSEN, and L, O. NIELSEN, Modelling of crack propagation in concrete applying the xfem. Computational Modelling of Concrete Structures, EURO-C, G, MESCHKE, R. DE BORST, H. MANG and N. BICANIC [Eds.], Taylor anf Francis, 33-42, 2006,
  • 2. Z. P. BAZANT, Mechanics of distributed cracking, Appl. Mech. Rev., 26, 675-705, 1986.
  • 3. Z. P. BAZANT Scaling of structural strength, Hermes-Penton, London 2003.
  • 4. Z. P. BAZANT and P. D, BHAT, Endochronic theory of inelasticity and failure of concrete, ASCE Journal of Engineering Mechanics, 102, 701-722, 1976.
  • 5. Z. P, BAZANT and M. JIRASEK, Nonlocal integral formulations of plasticity and damage: survey of progress, J. Engng. Mech., 128, 11, 1119-1149, 2002.
  • 6. Z. P. BAZANT and J. OZBOLT, Non-local microplane model for fracture, damage and size effect in structures, ASCE Journal of Engineering Mechanics, 116, 2485-2505, 1990.
  • 7. Z. P. BAZANT and C. L. SHIEH, Endochronic model for nonlinear triaxial behaviour of concrete, Nucl. Engng. Des, 47, 305-315, 1978.
  • 8. J. BOBINSKI and J. TEJCHMAN, Numerical simulations of localization of deformation in quas-brittle materials within non-local softening plasticity, Computers and Concrete, 4, 433-455, 2004.
  • 9. J. BOBINSKI and J. TEJCHMAN, Modelling of concrete behaviour with a non-local continuum damage approach, Archives of Hydro-Engineering and Environmental Mechanics, 52,2, 85-102, 2005.
  • 10. J. BOBINSKI and J. TEJCHMAN, Modelling of size effects in concrete using elasto-plasticity with non-local softening, Archives of Civil Engineering, 52, 1, 7-35, 2006.
  • 11. N. J. BURT and J. W. DOUGILL, Progressive failure in a model heterogeneous medium, ASCE Journal of Engineering Mechanics, 103, 365-376, 1977.
  • 12. A. CABALLERO, I. CAROL, and C. M. LOPEZ, New results in 3d meso-mechanical analysis of concrete specimens using interface elements, Computational Modelling of Concrete Structures, EURO-C G. MESCHKE, R. DE BORST, H. MANG and N. BICANIC [Eds.], Taylor anf Francis, 43-52, 2006.
  • 13. J. CHEN, H. YUAN, and D. KALKHOF, A nonlocal damage model for elastoplastic materials based on gradient plasticity theory, Report Nr. 01-13, Paul Scherrer Institut, 1, 13, 1-130, 2001.
  • 14. G. CUSATIS, Z. P. BAZANT, and L. CEDOLIN, Confinement-shear lattice model for concrete damage in tension and compression: I. theory, ASCE Journal of Engineering Mechanics, 129, 12, 1439-1448, 2003.
  • 15. G. A. D'ADDETTA, F, KUN, and E. RAMM In the application of a discrete model to the fracture process of cohesive granular materials, Granular Matter, 4, 77-90, 2002.
  • 16. R. DE BORST, J. PAMIN, and M. GEERS, On coupled gradient-dependent plasticity and damage theories with a view to localization analysis, European Journal of Mechanics A/Solids, 18, 6, 939-962, 1999.
  • 17. M. DI FRISCO and J. MAZARS, Crush-crack - a non-local damage model for concrete Mechanics of Cohesive-Frictional Materials, 321-347, 1996.
  • 18. F. V. DONZE, S. A. MAGNIER, L. DAUDEVILLE, and C. MARIOTTI, Numerical study of compressive behaviour of concrete at high strain rates, Journal for Engineering Mechanics, 1154-1163, 1999.
  • 19. A. DRAGON and Z. MROZ, A continuum model for plastic-brittle behaviour of rock and concrete, Int. Journ. Eng. Science, 17, 121-137, 1979.
  • 20. S. ECKARDT and C. KONKE, Simulation of damage in concrete structures using multiscale models, Computational Modelling of Concrete Structures, EURO-C G. MESCHKE, R. DE BORST, H. MANG and N. BICANIC [Eds.], Taylor and Francis, 77-83, 2006.
  • 21. H. J. HERRMANN, A. HANSEN, and S. Roux, Fracture of disordered elastic lattices in two dimensions, Physical Rev. B, 39, 637-647, 1989.
  • 22. A. IBRAHIMBEGOVIC, D. MARKOVIC, and F. GATUING, Constitutive model of coupled damage-plasticity and its finite element implementatation, Eur. J. Finite Elem., 12, 4, 381-405, 2003.
  • 23. M. KLISINSKI and Z. MROZ, Description of anelastic deformations and damage for concrete [in Polish], Technical University of Poznari, 193, 1988.
  • 24. T. A. KOMPFNER, Ein finites Elementmodell fur die geometrisch und physikalisch nicht-lineare Berechnung von Stahlbetonschalen [in Polish], PhD thesis 1983.
  • 25. J. KOZICKI and J. TEJCHMAN, Discrete methods to describe the behaviour of quasi-brittle and granular materials, Electronic Proceedings of 16-th Engineering Mechanics Conference ASCE, University of Washington, Seattle, USA, 16.07-18.07.2003, 1-10, 2003.
  • 26. J. KOZICKI and J. TEJCHMAN, 2d lattice model for fracture in brittle materials, Archives of Hydro-Engineering and Environmental Mechanics, 53, 2, 71-88, 2006.
  • 27. J. KOZICKI and J. TEJCHMAN, Modelling of fracture process in brittle materials using a lattice model, Computational Modelling of Concrete Structures, EURO-C G. MESCHKE, R. DE BORST, H. MANG and N. BICANIC [Eds.], Taylor anf Francis, 139-145, 2006.
  • 28. G. LILLIU and J. G. M. VAN MlER, 3d lattice type fracture model for concrete, Engineering Fracture Mechanics, 70, 927-941, 2003.
  • 29. T. C. Y. Liu, A. H. NILSON, and F. O. SLATE, Biaxial stress-strain relationships for concrete, ASCE Journal of Engineering Mechanics, 103, 423-439, 1996.
  • 30. P. MENETREY and K. J. WILLAM, Triaxial failure criterion for concrete and its generalization, ACI Structural Journal, 311-318, 1995.
  • 31. Z. MROZ, Mathematical models of inelastic concrete behaviour, University Waterlo Press, 47-72, 1972.
  • 32. H. MUHLHAUS and E. C. AIFANTIS, A variational principle for gradient plasticity, Int. J. Solids Structures, 28, 845-858, 1991.
  • 33. R. PALANISWAMY and S. P. SHAH, Fracture and stress-strain relationship of concrete under triaxial compression, ASCE Journal of Engineering Mechanics, 100, 901-916, 1974.
  • 34. J. PAMIN, Gradient-enhanced continuum models: formulation, discretization and applications, habilitation monograph, Cracow University of Technology, 2004.
  • 35. J. PAMIN and R. DE BORST, Simulation of crack spacing using a reinforced concrete model with an internal length parameter, Arch. App. Mech., 68, 9, 613-625, 1998.
  • 36. R. H. PEERLINGS, R. DE BORST, W. A. M. BREKELMANS, and M. G. D. GEERS, Gradient-enhanced damage modelling of concrete fracture, Mechanics of Cohesive-Frictional Materials, 3, 323-342, 1998.
  • 37. S. PIETRUSZCZAK, J. JIANG, and F. A. MiRZA, An elastoplastic constitutive model for concrete, Int. J. Solids Structures, 24, 7, 705-722, 1988.
  • 38. G. PIJAUDIER-CABOT and Z. BAZANT, Nonlocal damage theory, ASCE Journal of Engineering Mechanics, 113, 1512-1533, 1987.
  • 39. E. SCHLANGEN and E. J. GARBOCZI, Fracture simulations of concrete using lattice models: computational aspects, Engineering Fracture Mechanics, 57, 319-332, 1997.
  • 40. A. SIMONE and L. SLUYS, Continous-discountinous modeling of mode-i and mode-ii failure, Modelling of Cohesive-Prictional Materials P. A. VERMEER, W. EHLERS, H. J. HERRMANN and E. RAMM [Eds.], Balkema, 323-337, 2004.
  • 41. L. SLUYS, Wave propagation, localisation and dispersion in softening solids, PhD thesis. Delft University of Technology, 1992.
  • 42. L. SLUYS AND R. DE BORST, Dispersive properties of gradient and rate-dependent media, Mech. Mater., 183, 131-149, 1994.
  • 43. K. TAJIMA and N. SHIRAI Numerical prediction of crack width in reinforced concrete beams by particle model, Computational Modelling of Concrete Structures, EURO-C G. MESCHKE, R. DE BORST, H. MANG and N. BICANIC [Eds.], Taylor anf Francis, 221-230, 2006.
  • 44. J. G. M. VAN MIER, E. SCHLANGEN, and A. VERVUURT Lattice type fracture models for concrete, Continuum Models for Materials with Microstructure, H.B. MfJHLHAUS [Ed.], John Wiley & Sons, 341-377, 1995.
  • 45. J. G. M. VAN MIER and M. R. A. VAN VLIET, Influence of micro structure of concrete on size/scale effects in tensile fracture, Engineering Fracture Mechanics, 70, 16, 2281-2306, 2003.
  • 46. M. R. A. VAN VLIET, Size effect in tensile fracture of concrete and rock, PhD thesis, 2000.
  • 47. M. R. A. VAN VLIET and J. G. M. VAN MIER, Experimental investigation of concrete fracture under uniaxial compression, Mechanics of Cohesive-Prictional Materials, 1, 115-127, 1996.
  • 48. A. VERVUURT, J. G. M. VAN MIER, and E. SCHLANGEN, Lattice model for analyzing steel-concrete interactions, Computer Methods and Advances in Geomechanics, SIRIWARDANE and ZAMAN [Eds.], Balkema, Rotterdam 713-718, 1994.
  • 49. R. VIDYA SAGAR, Size effect in tensile fracture of concrete ~ a study based on lattice model applied to ct-specimen, cd-rom, Proc. 21th Intern. Congress on Theoretical and Applied Mechanics, ICTAM04, pp. 1-2, Warsaw 2004.
  • 50. G. WELLS and L. SLUYS, A new method for modeling of cohesive cracks using finite elements. Int. Journ. for Numerical Methods in Engineering, 50, 12, 2667-2682, 2001.
  • 51. H. M. ZBIB and C. E. AIFANTIS, A gradient-dependent flow theory of plasticity: application to metal and soil instabilities, Appl. Mech. Reviews, 42, 11, 295-304, 1989.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT7-0007-0013
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.