PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Microscopic and macroscopic analysis of granular material behaviour in 3D flat-bottomed hopper by the discrete element method

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents the application of the discrete element method to modelling of granular material filling and discharge in 3D flat-bottomed hopper. A mathematical model, as well as the developed software code, operates with spherical visco-elastic non-cohesive frictional particles. The evolution of granular flow, internal forces and densification (rarefaction) are characterized by macroscopic parameters such as the discharge rates, the porosity fields and the wall pressures, as well as by microscopic evaluations in terms of coordination number, velocity patterns and inter-particle contact forces. It was shown that qualitative characterization of flow may be done even by relatively rough models with small number of particles, which required to be increased, however, for more precise description of the localized phenomena. Unsatisfactory evaluation of the stress peak during discharge is presented as an illustrative example. The main focus of the paper is the analysis of particle friction effect and the consistency of micro and macro-phenomena in the time-dependent flow process.
Rocznik
Strony
231--257
Opis fizyczny
Bibliogr. 47 poz.
Twórcy
autor
  • Dept. of Reinforced Concrete and Masonry Structures Vilnius Gediminas Technical University Sauletekio al 11, Vilnius, Lithuania
Bibliografia
  • 1. H. M. JAEGER, S. R. NAGEL, R. P. BEHRINGER, Granular solids, liguids, and gases, Reviews of Modern Physics, 68, 4, 1259-1273, 1996.
  • 2. J. M. HUNTLEY, Fluidization, segregation and stress propagation in granular materials, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineer-ing Sciences, 356, 2569-2590, 1998.
  • 3. P. G. DE GENNES, Granular matter: a tentative view, Reviews of Modern Physics, 71, 2, S374-S382, 1999.
  • 4. H. J. HERRMANN, Granular matter, Physica A, 313, 188-210, 2002.
  • 5. S. C. McNAMARA, H. J. HERRMANN, Quasirigidity: Some uniqueness issues, Physical review, E 74, 061303-1-061303-14, 2006.
  • 6. A. W. ROBERTS, Particle and bulk solids handling technology - bridging the theory prac-tice gap, Fifth World Congress on Particle Technology April 23-27, 2006, Orlando, Florida, USA, CD ROM proceedings, 1-38, 2006.
  • 7. A. W. ROBERTS, Characterization of hopper and stockpile design, In Characterization of bulk solids, D. McGuNCHEY [Ed.j, Blackwell Publishing, 85-131, 2005.
  • 8. H. A. JANSSEN, Yersuche uber Getreidedruck in Silozellen, Z. Ver. Dt. Ing., 39, 1045-1049, 1895.
  • 9. A. DRESCHER, Analytical methods in bin-load analysis, Elsevier, Amsterdam-Oxford-New York-Tokyo 1991.
  • 10. R. M. NEDDERMAN, Statics and kinematics of granular materials, Cambridge University Press, New York 1992.
  • 11. Z. MRÓZ, Cz. SZYMAŃSKI, Gravity flow of granular material in a converging channel, Arch. Mech., 23, 897-917, 1971.
  • 12. Z. MRÓZ, I. SIELAMOWICZ, Deformation zones in granular materials in converging hoppers during filling and emptying processes, Engineering Transactions, 51, 4, 461-491, 2003.
  • 13. D. O. KRIMER, M. PFITZNER, K. BRAUER, Y. JIANG, M. Liu, Granular elasticity: General considerations and the stress dip in sand piles, Physical review E, 74, 061302-1-061310-10, 2006.
  • 14. K. BRAUER, M. PFITZNER, D. O. KRIMER, M. MAYER, Y. JIANG, M. Liu, Granular elasticity: Stress distributions in silos and under point loads, Physical review E, 74, 06061311-1-061311-10, 2006.
  • 15. J.W. LANDRY, G.S. GREST, S.J. PLIMPTON, Discrete element simulations of stress distributions in silos: crossover from two to three dimensions, Powder technology, 139, 233-239, 2003.
  • 16. M. SPERL, Experiments on corn pressure in silo cells-translation and comment of Janssen's paper from 1985, Granular Matter, 8, 59-65, 2006.
  • 17. J.M.F.G. HOLST, J.Y. Ooi, J.M. ROTTER, G.H. RONG, Numerical modeling of silo filling: I. Continuum analyses, J. Eng. Mech., 125, 94-103, 1999.
  • 18. J. TEJCHMAN, G. GUDEHUS, Silo-music and silo-quake experiments and a numerical Cosserat approach, Powder Technology, 76, 2, 201-212, 1993.
  • 19. S. A. ELASKAR, L. A. GODOY, D. D. GRAY, J. M. STILES, A viscoplastic approach to model the flow of granular solids, International Journal of Solids and Structures, 37, 2185-2214, 2000.
  • 20. J. TEJCHMAN, T. UMMENHOFER, Bedding effects in bulk solids in silos: experiments and a polar hypoplastic approach, Thin-Walled Structures, 37, 333-361, 2000.
  • 21. P. A. CUNDALL, O. D. L. STRACK, A discrete numerical model for granular assemblies, Geotechniąue, 29, 47-65, 1979.
  • 22. A. DŻIUGYS, B. J. PETERS, Ań Approach to Simulate the Motion of Spherical and Non-Spherical Fuel Particles in Combustion Chambers, Granular Materiał, 3, 4, 231-266, 2001.
  • 23. P. W. CLEARLY, M. L. SAWLEY, DEM modelling of industrial granular flows: 3D case studies and the effect of particle shape on hopper discharge, Applied Mathematical Modelling, 26, 89-111, 2002.
  • 24. C. S. CAMPBELL, C. E. BRENNEN, Computer simulation of shear flows of granular material, Mechanics of granular materials: New models and constitutwe relations [in:|, J. T. JENKINS and M. SATAKE [Eds.], Elsevier, Amsterdam 1983.
  • 25. O. R. WALTON, Particle -dynamie calculations of shear flow. Mechanics of granular materials: New models and constitutwe relations, J. T. JENKINS and M. SATAKE [Eds.], Elsevier, Amsterdam 327-338, 1983.
  • 26. C. THORNTON, Application of DEM to process engineering problems in DEM, [in:] 1-st US Conference, Colorado School of Mines Press, 87-100, 1989.
  • 27. S. MASSON, J. MARTINEZ, Effect of particle mechanical properties on silo flow and stresses from distinct element simulations, Powder Technology, 109, 164-178, 2000.
  • 28. P. A. LANGSTON, U. TUZUN, D. M. HEYES, Continuous potential discrete particle simulations of stress and velocity fields in hoppers. Transition from fluid to granular flow, Chemical Engineering Science, 49, 8, 1259-1275, 1994.
  • 29. H. P. ZHU, A. B. Yu, Steady-state granular flow in 3D cylindrical hopper with flat bottom: macroscopic analysis, Granular Matter, 7, 97-107, 2005.
  • 30. J. F. FERELLEC, J. MARTINEZ, S. MASSON, K. IWASHITA, Influence of particle rolling resistance on silo flow in DEM simulations, [in:], KISHINO [Ed.], Powders and Grains, Swets and Zetlinger, Lisse, 409-412, 2001.
  • 31. D. HIRSHFELD, D. C. RAPAPORT, Granular flow from a silo: discrete-particle simulations in three dimensions, Eur. Phys. J. E, 4, 193-199, 2001.
  • 32. R. BALEYIĆIUS, R. KACIANAUSKAS, Z. MRÓZ, I. SIELAMOWICZ, Discrete Element Method applied to multiobjective optimization of discharge flow parameters in hoppers, Structural and Multidisciplinary Optimization, 31, 3, 163-175, 2006.
  • 33. P. A. LANGSTON, M. A. AL-AWAMLEH, F. Y. FRAIGE, B. N. ASMAR, Distinct element modeling of non-spherical frictionless partide flow, ChemicaJ Engineering Science, 59, 425-435, 2004.
  • 34. J. Li, P. A. LANGSTON, C. WEBB, T. DYAKOWSKI, Flow of sphero-disc partides in reciangular hoppcrs - a DEM and experimental cornparison m 3D, Chemical Engineering Science, 59, 5917-5929, 2004.
  • 35. J. S. LESZCZYŃSKI, A discrete model of the dynamics of partide collisions in granular flows, Monograph no. 106, Częstochowa University of Technology, Częstochowa 2005.
  • 36. J. S. LESZCZYŃSKI, A discrete model of a two-particle contact applied to cohesive granular materials, Granular Matter, 5, 2, 91-98, 2003.
  • 37. R. BALEYIĆIUS, A. DŹIUGYS, R. KAĆIANAUSKAS, Discrete element method and its ap-plication to the analysis of penetraiion into granular media, Journal of Civil Engineering and Management, 10, l, 3-14, 2004.
  • 38. G. A. KOHRING, Dynamical simulations of granular flows on multi-processor computers, Computational methods in applied sciences '96, John Wiley and Sons Ltd., 190-196, 1996.
  • 39. R. D. MINDLIN, H. DERESIEWICZ, Elastic spheres in contact under varying obligue forces, J. Appl. Mech. Trafns. ASME, 20, 327-344, 1953.
  • 40. M. P. ALLEN, D. J. TILDESLEY, Computer simulation of liquids, Clarendon Press, Oxford, 1991.
  • 41. R. BALEYIGIUS, R. KAĆIANAUSKAS, A. DŹIUGYS, A. MAKNICKAS, K. VISLAVIĆIUS, DEMMAT code for numerical simulation of multi-particle dynamics, Information Technology and Control, 34, l, 71-78, 2005.
  • 42. R. BALEYIĆIUS, R. KAĆIANAUSKAS, A. DŹIUGYS, A. MAKNICKAS, K. VISLAVIĆIUS, Investigation of performance of programming approaches and languages used for numerical simulation of granular material by the discrete element method, Computer Physics Communications, 175, 6, 404-415, 2006.
  • 43. O. POULIQUEN, R. GuTFRAiNDress fluctuations and shear zones in guasi-static granular chute flows, Phys. Rev. E, 53, 1996, 557-561
  • 44. P. A. LANGSTON, U. TUZUN, D. M. HEYES, Continuous potential discrete partide simulations o f stress and yelocity fields in hoppers: Transition from fluid to granular flow, Chemical Engineering Science, 49, 8, 1259-1275, 1994.
  • 45. R. L. BROWN, J. C. RICHARDS, Principles of powder mechanics. Pergamon Press, Oxford 1970.
  • 46. J. CHOI, A. KUDROLLI, M. Z. BAŻANT, Velocity profile of granular flows inside silos and hoppers, Journal of Physics: Condensed Matter, 17, S2533-S2548, 2005.
  • 47. T. V. NGUYEN, C. BRENNEN, R. H. SABERSKY, Gravity flow of granular materials in Conical Hoppers, Journal of Applied Mechanics, 46, 10, 529-535.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT7-0005-0032
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.