PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Experimental and theoretical investigations of glass-fibre reinforced composite subjected to uniaxial compression for a wide spectrum of strain rates

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Results of static and dynamic compression} tests for two types of glass fibre-reinforced polypropylene composites are presented. Stress-strain curves showing the influence of the strain rate on the composite mechanical properties have been obtained. A three-dimensional description of the material behavior during the deformation has been developed. The material constitutive parameters have been calculated. Specification of the parameters and description of the methods used for their identification have been worked out. The results are discussed in terms of the deformation processes and the material non-homogeneity.
Rocznik
Strony
273--291
Opis fizyczny
Bibliogr. 24 poz.
Twórcy
autor
autor
  • Institute of Fundamental Technological Research, Polish Academy of Sciences, Świętokrzyska 21, 00-049 Warsaw, Poland
Bibliografia
  • 1. T.E. TAY, H.G. ANG, V.P.W. SHIM, An empirical strain rate-dependent constitutive relationship for glass-fibre reinforced epoxy and pure epoxy, Compos. Struct., 33, 4, 201-210, 1995.
  • 2. J.J. HORST, N.V. SALIENKO, J.L. SPOORMAKER, Fibre-matrix debonding stress analysis for short fibre-reinforced materials with matrix plasticity, finite element modelling and experimental verification, Compos. Part A-Appl., S 29, 5-6, 525-531, 1998.
  • 3. J. FITOUSSI, G. Guo, D. BAPTISTE, A statistical micromechanical model of anisotropic damage for SMC composites, Compos. Sci. TechnoL, 58, 5, 759-763, 1998.
  • 4. M. PINFOLD, G. CALVERT, C. GARROCH et al., A comparison of thermoelastic and numerical stress results for moulded composites plates, Key Eng. Mat., 144, 117-125, 1998.
  • 5. P.P. CAMANHO, F.L. MATTHEWS, A progressive damage model for mechanically fastened joints in composite laminates, J. Compos. Mater., 33, 24, 2248-2280, 1999.
  • 6. M. PIRY, W. MICHAELI, Stiffness and failure analysis of SMC components considering the anisotropic material properties, Macromol. Mater. Eng., 284, 11-12, 40-45, 2000.
  • 7. F. ELLYIN, Z.H. XIA, Rate-dependent constitutive modelling and micro-mechanical analysis of fibre-reinforced metal-matrix composites, J. Mech. Phys. Solids., 49, 11, 2543-2555, 2001.
  • 8. J.R. KLEPACZKO, Lateral inertia effects in the compression impact experiment, IFTR ;|| Reports 17, Warsaw 1969.
  • 9. J.A. ZUKAS, T. NICHOLAS et al., Impact Dynamics, John Wiley and Son, 1982.
  • 10. U.S. LINDHOLM, J. Mech. Phys. Solids, 12, 317, 1964.
  • 11. I.M. WARD, Mechanical Properties of Solid Polymers, Wiley, London 1971.
  • 12. C.G. SELL, Plastic deformation of glassy polymers: Constitutive equations and macro-molecular mechanisms, [in:] Strength of Metals and Alloys, H.J. McQuEEN et al. [Eds.], 1943-1982, Pergamon Press, Oxford 1986.
  • 13. A.S. ARGON, Rate processes in plastic deformation of crystalline and noncrystalline solids, 175-230, in: Mechanics and Materials: Fundamentals and Linkages, M. C. MEY-ERS et al. [Eds.], J. Wiley, New York 1999.
  • 14. PERZYNA, Fundamental problems in viscoplasticity, Advances in Mechanics, 9, 243-377, 1966.
  • 15. C.G. SELL, J.M. HIVER, A. DAHOUN, Experimental characterization of deformation damage in solid polymers under tension, and its interrelation with necking, Int. J. Solids Struct., 39, 3857-3872, 2002.
  • 16. S.M. ZEBARJAD, A. LAZZERI, R. BAGHERI, S.M. SEYED REIHANI, Role of the interface on the deformation mechanism of glass fiber/polypropylene composites, J. Mat. Sci. Letters, 21, 1007-1011, 2002.
  • 17. R.B. PECHERSKI, Macroscopic measure of the rate of deformation produced by micro-shear banding, Arch. Mech., 49, 385-401, 1997.
  • 18. R.B. PECHERSKI, Macroscopic effects of micro-shear banding in plasticity of metals, Acta Mechanica, 131, 203-224, 1998.
  • 19. R.B. PECHERSKI, K. KORBEL, Plastic strain in metals by shear banding. I. Constitutive description for simulation of metal shaping operations, Arch. Mech., 54, 603-620, 2002.
  • 20. Z. NOWAK, R.B. PECHERSKI, Plastic strain in metals by shear banding. II. Numerical identification and verification of plastic flow law accounting for shear banding. Arch. Mech., 54, 621-634, 2002.
  • 21. J. RYCHLEWSKI, Elastic energy decomposition and limit criteria [in Russian], Uspekhi Mekh.-Advances in Mech., 7, 51-80, 1984.
  • 22. J. RYCHLEWSKI, Unconventional approach to linear elasticity, Arch. Mech., 47, 149-171, 1995.
  • 23. K. KOWALCZYK, J. OSTROWSKA-MACIEJEWSKA, Energy-based limit conditions for transversally isotropic solids, Arch. Mech., 54, 5-6, 497-523, 2002.
  • 24. K. KOWALCZYK, J. OSTROWSKA-MACIEJEWSKA, R.B. PECHERSKI, An energy-based yield criterion for solids of cubic elasticity and orthotropic limit state, Arch. Mech., 55, 5-6, 2003.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT7-0004-0013
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.