Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

On the null condition for nonlinearly elastic solids

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
International Conference on Continuous and Discrete Modelling in Mechanics (05-09.09.2005 ; Warsaw ; Poland)
Języki publikacji
Smooth solutions to the Cauchy problem for the equations of nonlinear elastodynamics exist typically only locally in time. However, under the assumption of small initial data and an additional restriction, the so-called null condition, global existence and uniqueness of a classical solution can be proved. In this paper, we examine this condition for the elastodynamic equations and study its connection with the property of genuine nonlinearity as well as its relation with the phenomenon of self-resonance of nonlinear elastic waves. Using a special structure of plane waves elastodynamics [13], we provide an alternative and simple formulation of the null condition. This condition is then evaluated for some examples of elastic constitutive laws in order to determine the nature of the restrictions that it imposes.
Opis fizyczny
Bibliogr. 17 poz.
  • Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland,
  • 1. T.J.R. HUGHES, T. KATO, J.E. MARSDEN, Well-posed quasi linear second order hyperbolic systems with applications to nonlinear elastodynamics and general relativity, Arch, Rational Mech. Anal., 63, 274-294, 1976.
  • 2. R.J. DIPERNA, Global existence of solutions to nonlinear hyperbolic systems of conservation laws, J. Diff. Eqs., 20, 187-212, 1976.
  • 3. S. DEMOULINI, D.M.A. STUART, A.E. TZAVARAS, A variational approximation schem for three-dimensional elastodynamics with poly convex energy, Arch. Rational Mech. Anal., 157, 325-344, 2001.
  • 4. S. KLAINERMAN, The null condition and global existence to nonlinear wave equations Lectures in Applied Mathematics, 23, 293-326, 1986.
  • 5. T.C. SIDERIS, The null condition and global existence of nonlinear elastic waves, Inven. Math., 123, 323-342, 1996.
  • 6. T.C. SIDERIS, Nonresonance and global existence of prestressed nonlinear elastic waves, Ann. of Math., 151, 849-874, 2000.
  • 7. R. AGEMI, Global existence of nonlinear elastic waves, Inven. Math., 142, 225-250, 2000.
  • 8. A. SHADI TAHVILDAR-ZADEH, Relativistic and non-relativistic elastodynamics with small shear strains, Ann. Inst. H. Poincare Phys. Theor., 69, 275-307, 1998.
  • 9. F. JOHN, Formation of singularities in one-dimensional nonlinear wave propagation, Comm. Pure Appl. Math., 26, 377-405, 1974.
  • 10. R.W. OGDEN, Nonlinear elastic deformations, Dover 1997.
  • 11. R.W. OGDEN, Nonlinear elasticity with application to material modelling, Lecture Notes 6, Center of Excellence for Advanced Materials and Structures, AMAS, IFTR PAS, Warsaw 2003.
  • 12. J. XIN, Some remarks on the null condition for nonlinear elastodynamic system, Chin. Ann. Math. Ser. B, 23, 311-316, 2002.
  • 13. W. DOMAŃSKI and R. YOUNG, Interaction of plane waves in nonlinear elasticity, submitted.
  • 14. F. D. MURNAGHAN, Finite deformation of an elastic solid, Dover 1967.
  • 15. W. DOMANSKI, Weakly nonlinear elastic plane waves in a cubic crystal, Contemp. Math., 255, 45-61, 2000.
  • 16. P.G. CIARLET, Mathematical elasticity, Vol. 1: Three-dimensional elasticity. North Holland, Amsterdam 1988.
  • 17. X. JIANG and R.W. OGDEN, On azimuthal shear of a circular cylindrical tube of compressible elastic material, Quart. J. Mech. Appl. Math., 51, 143-158, 1998.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.