Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Normal shock wave, terminating a local supersonic area on an airfoil, not only limits aerodynamic performance but also becomes a significant source of a high-speed impulsive noise on the rotor blade of a helicopter. It is proposed to apply passive control to disintegrate the shock wave by smearing pressure gradients created by the shock. Details of the flow structure obtained by this method are studied numerically. A new boundary condition of a perforated wall is verified against experimental data for a passive control of the shock wave in a channel flow and on an airfoil. This method of shock wave disintegration is proven to work for internal flows in transonic nozzles and appears to be effective for transonic airfoils as well. The substitution of a shock wave by a gradual compression changes completely the source of the high-speed impulsive noise and bears potential of its reduction.
Czasopismo
Rocznik
Tom
Strony
543--573
Opis fizyczny
Bibliogr. 11 poz.
Twórcy
Bibliografia
- 1. E. Stanewsky, J. Delery, J. Fulker, W. Geissler, EUROSHOCK: drag reduction by passim shock control; results of the project EUROSHOCK, AER 2-CT92-0049 supported by the European Union 1993-1995, Vieweg, Braunschweig 1997.
- 2. E. Stanewsky, ,J. Delery, J. Fulker, P. Matteis, Drag reduction by shock and boundary layer control: results of the project EUROSHOCK II supported by the European Union 1996-1999, Springer-Verlag, Berlin 2002.
- 3. F. Magagnato, "Kappa" Karlsruhe parallel program for aerodynamics, TASK Quarterly, 2, 2, 215 270, 1998.
- 4. P. Doerffer, R. Bohning, Modelling of perforated plate aerodynamics performance, Aerospace Science and Technology, 4, 525-534, 2000.
- 5. P. Doerffer, R. Bohning, Shock wave - boundary layer interaction control by wall ventilation, Aerospace Science and Technology, 7, 171-179, 2003.
- 6. W. Braun, Experimentelle Untersuchung der turbulenten Stoss-Grenzschicht-Wechselwirkung mit passiver Beeinflussung, PhD thesis, Karlsruhe, 1990.
- 7. T. L. Holst, Viscous transonic airfoil workshop compendium of results, Journal of Aircraft, 25, 12, 1073-1087, 1988.
- 8. C. D. Harris, Two-dimensional aerodynamic characteristics of the NACA 0012 airfoil in the Langley 8-foot transonic pressure tunnel, NASA Technical Memorandum 81927, 1981.
- 9. C. L. Ladson, A. S. Hill, W. G. Johnson jr., Pressure distributions from High Reynolds number transonic tests of an NACA 0012 airfoil in the Langley 0.3-meter transonic cryogenic tunnel, NASA Technical Memorandum 100526, 1987.
- 10. C. L. Ladson, A. S. Hit.l., High Reynolds number transonic tests of an NACA 0012 airfoil in the Langley 0.3-meter transonic cryogenic tunnel, NASA Technical Memorandum 100527, 1987.
- 11. R,. E. Mineck, P. M. Hartwich, Effect of full-chord porosity on aerodynamic characteristics of the NACA 0012 airfoil, NASA Technical Paper 3591, 1996.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT7-0001-0080