PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Flow of a micropolar fluid on a continuous moving surface

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The present paper deals with the analysis of steady boundary layer flow and heat transfer of a micropolar fluid on an isothermal continuously moving plane surface. It is assumed that the microinertia density is variable and not constant, as in many other published papers. Also, the viscous dissipation effect is taken into account. The basic partial differential equations are reduced to a system of nonlinear ordinary differential equations, which is solved numerically using the Keller-box method. Numerical results are obtained for the skin friction coefficient, local Nusselt number, as well as velocity, temperature and microrotation profiles. Results are shown in graphical form and the numerical values for the skin friction coefficient and local Nusselt number are given in the form of tables. The effects of material parameter K, Prandtl number Pr and Eckert number Ec on the flow and heat transfer characteristics are discussed.
Rocznik
Strony
529--541
Opis fizyczny
Bibliogr. 29 poz.
Twórcy
autor
autor
autor
  • School of Mathematical Sciences, National University of Malaysia 43600 UKM Bangi, Selangor, Malaysia
Bibliografia
  • 1. B. C. Sakiadis, Boundary layers on continuous solid surfaces, AlChE. J., 7, 26-28, see also pp. 221-225 and 467-472, 1961.
  • 2. F. Tsou, E. Sparrow and R. Goldstein, Flow and heat transfer in the boundary layer on a continuous moving surface. Int. J. Pleat Mass Transfer, 10, 219-235, 1967.
  • 3. E. Magyari and B. Keller, Heat and mass transfer in the boundary layers on an exponentially stretching continuous surface, J. Phys. D: Appl. Phys., 32, 577-585, 1999.
  • 4. E. Magyari and B. Keller, Exact solutions for self-similar boundary-layer flows induced by permeable stretching walls, Eur. J. Mech. B/Fluids, 19, 109-122, 2000.
  • 5. S. J. Liao and I. Pop, Explicit analytic solution for similarity boundary layer equations, Int. J. Heat Mass Transfer, 47, 75-85, 2004.
  • 6. R. Nazar, N. Amin and I. Pop, Unsteady boundary layer flow due to a stretching surface in a rotating fluid, Mech. Res. Comm., 31, 121-128, 2004.
  • 7. I. A. Hassanien, A. Shamardan, N. M. Moursy and R. S. R. Gorla, Flow and heat transfer in the boundary layer of a micropolar fluid on a continuous moving surface, Int. J. Numer. Methods Heat Fluid Flow, 9, 643-659, 1999.
  • 8. J. W. Hoyt and A. G. Fabula, The effect of additives on fluid friction, US Naval Ordinance Test Station Report, 1964.
  • 9. W. M. Vogel and A. M. Patterson, An experimental investigation of additives injected into the boundary layer of an underwater body. Pacific Naval Lab. of the Defense Res. Board of Canada, Report 64-2, 1964.
  • 10. M. I. Char and C. L. Chang, Effect of wall conduction on natural convection flow of micropolar fluids along a flat plate, Int. J. Heat and Mass Transfer, 40, 3641-3652, 1997.
  • 11. A. C. Eringen, Theory of micropolar fluids, J. Math. Mech., 16, 1-18, 1966.
  • 12. A. C. Eringen, Theory of thermomicrofluids, J. Math. Analy. Appl., 38, 480-496, 1972.
  • 13. T. Ariman, M. A. turk and N. D. sylvester, Microcontinuum fluid mechanics - a review, Int. J. Engng. Sci., 11, 905-930, 1973.
  • 14. G. Łukaszewicz, Micropolar Fluids: Theory and Application, Birkhauser, Basel 1999.
  • 15. A. C. Eringen, Microcontinum Field Theories. II: Fluent Media, Springer, New York 2001.
  • 16. V. M. Soundalgekar and H. S. Takhar, Flow of micropolar fluid past a continuously moving plate, Int. J. Engng. Sci., 21, 961-965, 1983.
  • 17. M. A. Hossain and M. K. Chowdhury, Mixed convection flow of micropolar fluid over an isothermal plate with variable spin gradient viscosity, Acta Mech., 131, 139-151, 1998.
  • 18. Y. J. Kim, Thermal boundary layer flow of a micropolar fluid past a wedge with constant wall temperature, Acta Mech., 138, 113-121, 1999.
  • 19. Y. J. Kim and T. A. Kim, Convective micropolar boundary layer flows over a wedge with constant surface heat flux, Int. J. Appl. Mech. Engng., 8, 147-153, 2003.
  • 20. G. Ahmadi, Self-similar solution of incompressible micropolar boundary layer flow over a semi-infinite plate, Int. J. Engng. Sci., 14, 639-646, 1976.
  • 21. G. S. Guram and A. C. Smith, Stagnation flow of micropolar fluids with strong and weak interactions, Comp. Math. with Appl., 6, 213-233, 1980.
  • 22. A. Desseaux and M. Bellalij, Improved solutions to a micropolar fluid driven by a continuous porous plate, Int. J. of Num. Methods for Heat & Fluid Flow, 9, 730-741,1999.
  • 23. S. K. Jena and M. N. Mathur, Similarity solutions for laminar free convection flow of a thermomicropolar fluid past a non-isothermal vertical flat plate, Int. J. Engng. Sci., 19, 1431-1439,1981.
  • 24. J. Peddieson, An application of the micropolar fluid model to the calculation of turbulent shear flow, Int. J. Engng. Sci., 10, 23-32, 1972.
  • 25. R. Bhargava, L. Kumar and H. S. Takhar, Finite element solution of mixed convection micropolar flow driven by a porous stretching sheet, Int. J. Engng. Sci., 41, 2161-2178, 2003.
  • 26. R. S. R. Gorla, Combined forced and free convection in micropolar boundary layer flow on a vertical flat plate, Int. J. Engng. Sci., 26, 385-391, 1988.
  • 27. D. A. S. Rees and A. P. Bassom, The Blasius boundary-layer flow of a micropolar fluid, Int. J. Engng. Sci., 34, 113-124, 1996.
  • 28. D. A. S. Rees and I. Pop, Free convection boundary-layer flow of a micropolar fluid from a vertical flat plate, IMA J. Applied Math., 61, 179-197, 1998.
  • 29. T. Cebeci and P. Bradshaw, Physical and Computational Aspects of Convective Heat Transfer, Springer, New York 1988.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT7-0001-0079
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.