PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Robust identification of an augmented Gurson Model for elasto-plastic porous media

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the paper we investigate the robust identification approach to identify the material parameters in the augmented Gurson model for the elasto-plastic porous media. We consider the robust loss function given by Huber [9], Beaton and Tuckey [38] and the loss function based on the l1-norm. The resulting minimization problem is solved by means of our own implementation of the Boender et al. global minimization method. Our aim is to compare the results with our earlier standard least squares estimates. In the paper, the effects of nucleation and growth of voids in the plastic porous media are investigated. Three different forms of the model are considered: the augmented Gurson model (total porosity model) with variable nucleation and growth material function, the same model with constant growth material function and the separated porosity model. The identification of the material functions parameters is based on Fischer's experimental data set for axisymmetric tension of steel specimens.
Rocznik
Strony
125--154
Opis fizyczny
Bibliogr. 46 poz.
Twórcy
autor
  • Institute of Fundamental Technological Research, Polish Academy of Sciences, Świętokrzyska 21, PL 00-049 Warsaw, Poland
Bibliografia
  • 1. P.W. BRIDGMAN, Studies in large plastic flow and fracture, McGraw-Hill, 1952.
  • 2. M. SAJE, J. PAN and A. NEEDLEMAN, Void nucleation effects on shear localization in porous plastic solids, Int. J. Fracture, 19, 163, 1982.
  • 3. J. CHAKRABARTY, Applied plasticity, Springer-Verlag, New York, 2000.
  • 4. A.L. GURSON, Continuum theory of ductile rupture by void nucleation and growth. Part 1, Yield criteria and flow rules for porous ductile media, J. Engng. Materials and Technology, Trans. of the ASME, 99, 2-15, 1977.
  • 5. K.A. CLARKE, Testing nonnested models of international relations: reevaluating realism, American Journal of Political Science, 45, 1-62, 2001.
  • 6. M. MCALEER, The significance of testing empirical non-nested models, Journal of Econometrics, 67, 149-171, 1995.
  • 7. J.R. FISHER, Void nucleation in spheroidized steels during tensile deformation, Ph.D. Thesis, Brown University, 1980.
  • 8. J. R. FISHER and J. GURLAND J, Void nucleation in spheroidized carbon steels. Part 1: Experimental, Metal Science, 15, 5, 185-192, 1981.
  • 9. P.J. HUBER, Robust methods of estimation of regression coefficients, Math. Operations-forsch. Stat., Ser., Stat., 8, 141-153, 1977.
  • 10. M. GOLOGANU, J.-B. LEBLOND, G. PERRIN and J. DEVAUX, Recent extensions of Gur-son's model for porous ductile metals, [in:] Continuum micromechanics P. SUQUET [Ed.], 61-130, Springer, Berlin 1995.
  • 11. A.L. GURSON, Continuum theory of ductile rupture by void nucleation and growth. Part 1. Yield criteria and flow rules for porous ductile media, J. Engng. Materials and Technology, Trans. of the ASME, 99, 2-15, 1977.
  • 12. J. GURLAND, Observations on the fracture of cementite particles in spheroidized 1.05%C steel deformed at room temperature, Acta Metall., 20, 735-741, 1972.
  • 13. J. KOPLIK and A. NEEDLEMAN, Void growth and coalescence in porous plastic solids, Int. J. Solids Structure, 24, 835-853, 1988.
  • 14. J.-B. LEBLOND, G. PERRIN and J. DEVAUX, An improved Gurson-type model for hard-enable ductile metals, European Journal of Mechanics A/Solids, 14, 499-527, 1995.
  • 15. G.C. Li X.W. LING and H. SHEN On the mechanism of void growth and the effect of straining mode in ductile materials, Int. J. Plasticity, 16, 39-58, 2001.
  • 16. F.A. McCuNTOCK, A criterion for ductile enlargement of voids in triaxial stress fields, ASME Journal of Applied Mechanics, 4, 363—71, 1968.
  • 17. B. BUDIANSKY, JW. HUTCHINSON, S. SLUTSKY Void growth and collapse in viscous solids, [in:] HG. HOPKINS, M.J. SEWELL [Eds.], Mechanics of solids, Oxford, Pergamon, 1344, 1982.
  • 18. J.R. RICE, D.M. TRACEY, On the ductile enlargement of voids in triaxial stress fields, J. Mech. Phys. Solids, 17, 201-217, 1969.
  • 19. GOTOH MANABU, YAMASHITA MINORU, An aspect of plasticity with compressibility, Int. Journal of Plasticity, 19, 383-—401, 2003.
  • 20. A.A. BENZERGA, Micromechanics of coalescence in ductile fracture, J. Mech. Phys. Solids, 50, 1331-1362, 2002.
  • 21. F.M. BEREMLN, Experimental and numerical study of the different stages in ductile rupture: application to crack initiation and stable crack growth, [in:] S. NEMAT-NASSER, [Ed.], Three-Dimensional Constitutive relations of Damage and Fracture, Pergamon Press, 157—172, New York 1981.
  • 22. M. GOLOGANU, J.-B. LEBLOND, J. DEVAUX, Approximate models for ductile metals containing non-spherical voids — case of axisymmetric prolate ellipsoidal cavities, J. Mech. Phys. Solids, 41, 11, 1723—1754, 1993.
  • 23. M. GOLOGANU, J.-B. LEBLOND, J. DEVAUX) Numerical and theoretical study of coalescence of cavities in periodically voided solids, [in:] A. NEEDLEMAN [Ed.], Computational Material Modeling, ASME, 223—244, New York 1994,
  • 24. M. GOLOGANU, J.-B. LEBLOND, G. PERRIN, J. DEVAUX, Recent extensions of Gur-son's model for porous ductile metals, [in:] P. SUQUET, [Ed.], Continuum micromechanics, Springer, 61—130, Berlin 1995.
  • 25. M. GOLOGANU) J.-B. LEBLOND) G. PERRIN, J. DEVAUX, Theoretical models for void coalescence in porous ductile solids — I: coalescence in "layers", Int. J. Solids Struct., 38, 32—33, 5581-5594, 2001.
  • 26. M. GARAJEU, J.C. MICHEL, P. SUQUET, A micromechanical approach of damage in vis-coplastic materials by evolution in size, shape and distribution of voids, Comput. Methods Appl. Mech. Eng., 183, 223—246, 2000.
  • 27. A. NEEDLEMAN) J.R. RICE Limits to ductility set by plastic flow localization, [in:] Mechanics of Sheet Metal Forming, 237-267, [Eds.] D.P. KOISTINEN and N.-M. WANG, Plenum, New York 1978.
  • 28. Z. NOWAK, A. STACHURSKI, Nonlinear regression problem of material functions identification for porous media plastic flow, Engineering Transactions, 49, 637-661, 2001.
  • 29. Z. NOWAK A. STACHURSKI Global optimization in material functions identification for voided plastic flow, Computer Assisted Mech. and Engng. Sciences, 9, 205-221, 2002.
  • 30. Z. NOWAK, A. STACHURSKI) Modelling and identification of voids nucleation and growth effects in porous media plastic flow, Control and Cybernetics, 32, 819-849, 2003.
  • 31. M. GOTOH and M. YAMASHITA, An aspect of plasticity with compressibility Int. J. of Plasticity, 19, 383-401, 2003.
  • 32. T. PARDOEN and F. DELANNAY, Assessment of void growth models from porosity measurements in cold-drawn copper bars Metallurgical and Materials Transactions, 29A, 1895-1909, 1998.
  • 33. T. PARDOEN, I. DOGHRI and F. DELANNAY, Experimental and numerical comparison of void growth models and void coalescence criteria for the prediction of ductile fracture in copper bars, Acta Materialia, 46, 541-552, 1998.
  • 34. T. PARDOEN and J.W. HUTCHINSON, An extended model for void growth and coalescence, Journal Mech. Phys. Solids, 48, 2467-2512, 2000.
  • 35. B. MARINI, F. MUDRY and A. PINEAU, Experimental study of cavity growth in ductile rupture, Engng Fracture Mechanics, 6, 989-996, 1985.
  • 36. P. PERZYNA, Constitutive modelling of dissipative solids for postcritical behaviour and fracture, ASME J. Eng. Materials and Technology, 106, 410-419, 1984.
  • 37. P. PERZYNA and Z. NOWAK, Evolution equation for the void fraction parameter in necking region, Arch. Mech., 39, 1-2, 73-84, 1987.
  • 38. G.A.F. SEBER, C.J. WILD, Nonlinear Regression, John Wiley and Sons, NY 1989.
  • 39. O.P. SOVIK and C. THAULOW, Growth of spherical void in elastic-plastic solids, Fatigue Fract. Engng Mater. Struct., 20, 12, 1731-1744, 1997.
  • 40. C.C. CHU, A. NEEDLEMAN, Void nucleation effects in biaxially stretched sheets, Trans. ASME, J. Engng., Materials and Technology, 102, 249-256, July 1980.
  • 41. V. TVERGAARD, Material failure by void growth to coalescence, Adv. Appl. Mech., 27, 83-151, 1990.
  • 42. SODERSTROM T. and STOICA P., System Identification, Prentice Hall, International University Press, Cambridge, 1989.
  • 43. C.G. BOENDER, A.H.G. RINNOOY KAN, L. STROUGIE and G.T. TIMMER A Stochastic Method for Global Optimization, Mathematical Programming, 22, 125-140, 1982.
  • 44. A. TORN and A. ZILINSKAS, Global Optimization, Springer Verlag, Berlin, Heidelberg, 1989.
  • 45. W.H. PRESS, S.A. TEUKOLSKY, W.T. VETTERLING and B.P. FLANNERY, Numerical Recipes in C: The Art of Scientific Computing, Cambridge University Press, Cambridge, 1993.
  • 46. Q. VUONG, Likelihood ratio tests for model selection and nonnested hypothesis, Econometrica, 57, 307-333, 1989.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT7-0001-0007
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.