Tytuł artykułu
Identyfikatory
Warianty tytułu
Metody badań ultradźwiękowych, jako efektywny sposób szacowania trwałości oraz diagnozowania zdolności eksploatacyjnych laminatów kompozytowych stosowanych w lotnictwie
Języki publikacji
Abstrakty
The paper presents selected issues in the field of exploitation research and the prediction capabilities of durability of composite laminates by ultrasonic methods used in the aerospace industry. Some research methods allow to set the quality parameters and operating in real aircraft structures. The study determined the relationship between the amplitude decrease of the ultrasonic wave and the level of porosity for hand lay-up manufactured glass / epoxy laminate using the method Through-Transmission of representative in C (TT C-Scan). In addition, showing the ability of amplitude attenuation imaging methods to detect and determine the extent of damage of high quality laminate and metal fiber composite after at low-dynamic velocity. It was specified real area an internal damage in FML laminates subjected to dynamic impact on low-energy, for which there was no visible damage in the outer layers. The study also determined the relationship between energy and the impact of dynamic surface area in testing laminates.
W pracy przedstawiono wybrane zagadnienia z zakresu badań zdolności eksploatacyjnych oraz prognozowania trwałości metodami ultradźwiękowymi laminatów kompozytowych stosowanych w przemyśle lotniczym. Wybrane metody badawcze umożliwiają określenie parametrów jakościowych jak i eksploatacyjnych rzeczywistych struktur lotniczych. W pracy określono zależność pomiędzy wartością spadku amplitudy fali ultradźwiękowej a poziomem porowatościdla wytworzonego metodą laminowania ręcznegolaminatu szklano/epoksydowego przy użyciu metody Through-Transmissionw zobrazowaniu w trybie C (TT C-Scan). Dodatkowo pokazano zdolność metody obrazowania tłumienia amplitudowego do wykrywania i określania wielkości uszkodzeń wysokojakościowych laminatów kompozytowych i metalowo włóknistych po uderzeniach dynamicznych o niskich prędkościach. Określono rzeczywiste pola powierzchni uszkodzeń wewnętrznych laminatów FML poddanych uderzeniom dynamicznym o niskich energiach, dla których nie odnotowano widocznych uszkodzeń w warstwach zewnętrznych. W pracy wyznaczono również zależność pomiędzy energią uderzenia dynamicznego a polem powierzchni uszkodzenia badanych laminatów.
Czasopismo
Rocznik
Tom
Strony
284--289
Opis fizyczny
Bibliogr. 39 poz.
Twórcy
autor
autor
autor
autor
autor
- Department of Materials Engineering Faculty of Mechanical Engineering Lublin University of Technology ul. Nadbystrzycka 36, 20-618 Lublin, Poland, j.bienias@pollub.pl
Bibliografia
- 1. Alderliesten RC, Homan JJ. Fatigue and damage tolerance issues of Glare in aircraft structures. International Journal of Fatigue 2006; 28:1116–1123.
- 2. Ardakani M A, Khatibi A A, Ghazavi S A. A study on the manufacturing of Glass-Fiber-Reinforced Aluminum Laminates and the effect of interfacial adhesive bonding on the impact behavior. Proceedings of the XI International Congress and Exposition 2008; Florida, USA.
- 3. ASTM D7136. Standard test method for Measuring the Damage Resistance of a Fiber-Reinforced-Polymer matrix Composites to a Drop-Weight Impact event. Book of Standards 2006; 3 (15).
- 4. Bieniaś J. Fibre metal laminates – some aspects of manufacturing process, structure and selected properties. Kompozyty 2011; 11: 39–43.
- 5. Bowles KJ, Frimpong S. Void effects on the interlaminar shear of unidirectional graphite reinforced composites. Journal of Composite Materials 1992; 26: 1487–1509.
- 6. Campbell FC. Manufacturing Technology for Aerospace Structural Materials.Elsevier, 2006.
- 7. Cantor B, Assender H, Grant P. Aerospace Materials.Bristol: IOP Publishing Ltd, 2001.
- 8. Caprino G, Spatarob G, Del Luongo S. Low-velocity impact behaviour of fibreglass–aluminium laminates. Composites 2004; 35: 605–616.
- 9. Chambers AR , Earl JS, Squires CA , Suhot MA. The effect of voids on the flexural fatigue performance of unidirectional carbon fibre composites developed for wind turbine applications. International Journal of Fatigue 2006; 28: 1390–1395.
- 10. Ciliberto A, Cavaccini G, Salvetti O, Chimenti M, Azzarelli L, Bison PG, Marinetti S, Freda A, Grinzato E. Porosity detection in composite aeronautical structures. InfraredPhysics and Technology 2002; 43: 139–143.
- 11. Davies GA, Zhang X. Impact damage prediction in carbon composite structures.International Journal of Impact Engineering 1995; 16 (1): 149–170.
- 12. Dragan K, Bieniaś J, Leski A. Inspection methods for quality control of fibre metal laminates (FML) in the aerospace components. XVI Seminarium Kompozyty Teoria i praktyka 2012; Poraj, Poland.
- 13. Freeman WT. The Use of Composites in Aircraft Primary Structure. Composites Engineering 1993; 3: 767–775.
- 14. Hodgkinson JM. Mechanical testing of advanced fibre composites. Woodhead Publishing Ltd, 2000.
- 15. Joeng H, Hsu DK. Experimental analysis of porosityinduced ultrasonic attenuation and velocity change in carbon composites. Ultrasonics 1995; 33(3): 200–202.
- 16. Laliberte JF, Poon C, Straznicky PV, Fahr A. Post-impact fatigue damage growth in fiber-metal laminates. International Journal of Fatigue 2002; 24: 249–256.
- 17. Lawcock GD, Ye L, Mai YW, Sun CT. Effects of fibre/matrix adhesion on carbon-fibre-reinforced metal laminates-II . Impact behavior.Composites Science and Technology 1997; 57: 1621–1628.
- 18. Liaw BM, Liu YX, Villars EA. Impact Damage Mechanisms in Fiber Metal Laminates, Proceedings of the SEM Annual Conference on Experimental and Applied Mechanics 2001; Portland, USA.
- 19. Liu L, Zhang B. Effects of cure cycles on void content and mechanical properties of composite laminates. Composite Structures 2006; 73:303–309.
- 20. Lopes CS, Remmers JC, Gürdal Z. Influence of porosity on the interlaminar shear strength of fibre-metal laminates. Key Engineering Materials 2008; 383: 33–52.
- 21. Leali M, Costa S, Almeida M, Rezende M. The influence of porosity on the interlaminar shear strength of carbon/epoxy and carbon/bismaleimide fabric laminates. Composites Science and Technology 2001; 61: 2101–2108.
- 22. Miracle DP, Donaldson SL. ASM Handbook Vol. 21 Composites. ASM International, 2001.
- 23. Kosaka T, Osaka K, Sawada Y. Damage characterization of titanium/GFRP hybrid laminates subjected to low-velocity impact.Composites2011; 42: 772–781.
- 24. Pearson MR, Eaton MJ, Featherston CA, Holford KM, Pullin R. Impact Damage Detection and Assessment in Composite Panels using Macro Fibre Composites Transducers. Journal of Physics. Conference Series, 2012; 305.
- 25. Purslow D. The optical assessment of the void content in composite materials, Composites 1984; 15(3): 207-210.
- 26. Reid A, Zhou G. Impact behavior of fibre-reinforced composite materials and structures. USA: CRC Press, 2000.
- 27. Richardson MO, Wisheart MJ. Review of low-velocity impact properties of composite materials. Composites 1996; 27: 1123–1131.
- 28. Sayer M, Bektas NB, Sayman O. An experimental investigation on the impact behavior of hybrid composite plates. Composite Structures 2010; 92: 1256–1262.
- 29. Short GJ, Guild FJ, Pavier MJ. Post-impact compressive strength of curved GFRP laminates. Composites 2002; 33: 1487–1495.
- 30. Sohn MS, Hua XZ, Kimb JK, Walker L. Impact damage characterization of carbon fbre/epoxy composites with multi-layer reinforcement. Composites 2000; 31: 681–691.
- 31. Staffan T. Void formation and transport in manufacturing of polymer composites. Doctoral thesis. Luleå University of Technology, www.epubl.luth.se/avslutade/0348-8373/184
- 32. Swanson SR. Introduction to Design and Analysis with Advanced Composite Materials. Prentice-Hall, 1997.
- 33. Vlot A, Gunnink JW. Fibre Metal Laminates: an introduction. Kluwer Academic Publishers, Dordrecht, The Netherlands 2001.
- 34. Vlot A. Impact loading on fibre metal laminates. International Journal of Impact Engineering 1996; 18(3): 291–307.
- 35. Vlot A, Krull M. Impact Damage Resistance of Various Fiber Metal Laminates. Journaldephysique 1997; 7(3): 1045–1050.
- 36. Vogelesang LB, Vlot A. Development of fibre metal laminates for advanced aerospace structures. Journal of Materials Processing Technology 2000; 103: 1–5.
- 37. Woerden HJ, SinkeJ, Hooijmeijer PA. Maintenance of glare structures and glare as riveted or bonded repair material. Applied Composite Materials 2003; 10: 307–329.
- 38. Wu G, Yang JM. The mechanical behaviour of glare laminates for aircraft structures. JOM 2005; 57:72–79.
- 39. Zhu H et al. Influence of Voids on the Tensile Performance of Carbon/epoxy Fabric Laminates. Journal of Materials Science & Technology 2011; 27(1): 69–73.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT6-0015-0036
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.