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1. Introduction

The problem of undesired vibration reduction has been known 
since many years ago and becomes more attractive nowadays. The 
dynamic vibration absorbers (DVA) are special devices, consisting 
of masses suspended on springs and dampers. In the classical theory 
of DVA, the primary structure is modelled as a spring mass system. 
However, other dynamic vibration absorption models also have high 
interest in research and engineering application. In particular, the pen-
dulum type systems can play an important role in many fields such as 
machinery, transportation and civil engineering. But, dynamic behav-
iour of a pendulum absorber is significantly more complex than it is 
supposed by the widely used additional simple dynamical dampers.

The autoparametric vibration pendulum absorber (AVPA) is de-
signed to absorb energy from the primary system (main mass). This 
absorption effect is efficient only in the limited band of vibration fre-
quencies of the main system [1]. Unlike the classical absorber, the use 
of the pendulum absorber does not result in excitation of vibrations 
with considerable amplitudes at other frequencies. This is due to the 
rigid regime of excitation of vibrations of the pendulum only near 
its internal resonance frequency for a resonance excitation frequency 
ratio of 1/2, [2, 6, 8].

Many papers dealing with various types of dynamic dampers 
and related topics have been published during the last decades. Some 
pendulum type absorbers have been applied for vibration protection 
systems on tower-pipes, chimneys, civil structures (buildings and 
bridges) affected by wind or seismic vibration, etc. [5]. The collec-
tion of many vibration absorbers and their practical applications are 
presented by Sun [7].

This paper deals with a pendulum absorber connected to a damped 
oscillator system. In this type of structures different motions are pos-

sible: periodic, quasi-periodic, chaotic or the pendulum may rotate 
[9]. Especially transition to rotation and chaos can lead to unexpected 
increase of amplitude and eventually to destruction of the structure. If 
the pendulum plays a role of a dynamical absorber, this kind of mo-
tion is unwanted. The first possible intuitive solution is to increase the 
system damping. This study is to estimate how the system damping 
influences the absorption efficiency of AVPA. In addition, obtained 
results allow preparing the control algorithm based on change in the 
system damping.

2. Model of AVPA

Let us consider a pendulum vibration absorber attached to a 
damped oscillator. The oscillator is forced by harmonic force F(t) with 
amplitude q and frequency ϑ near the principal parametric resonance. 
The suspension of the primary system consists of a linear spring with 
stiffness reduced in dimensionless form to one and a viscous damp-
ing function α1X′. Damping of the pendulum is described by linear 
function α2φ′.

The differential dimensional equations of motion of the two de-
grees-of-freedom autoparametric system (Fig. 1) are derived by the 
second kind of Lagrange equations and they are shown in papers [9].
The equations of motion are express in the dimensionless form:

	 X X X q'' ' ( ''sin ' cos ) cos ,+ + + + =α µλ ϕ ϕ ϕ ϕ ϑτ1
2     (1)

	 ϕ α λ ϕϕ'' '' sin .'+ + + =( )2 1 0X 	 (2)

The second equation represents the pendulum and the first one 
is the excited system (the oscillator). The μ and λ represent pendu-
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lum parameters. These parameters are responsible for the internal 
couplings of the pendulum absorber and the oscillator, also. Detailed 
information and definition of dimensionless parameters: α1, α2, µ, λ 
and q are presented in [10].

3. Parametric analysis of damping

3.1.	 Harmonic Balance Method

The harmonic balance method (HBM) is used to find an approxi-
mate solution for the system applied near the principal internal reso-
nance condition. Thus, in the first approximation, the solutions are 
assumed as:

x A B( ) ( )cos , ( ) ( )cos ,/τ τ ϑτ φ ϕ τ τ τ φϑ= + = +[ ] ( ) 1 22     (3)

where A(τ)=A, B(τ)=B and φ1 and φ2 are amplitudes and phase angles 
of the oscillator and the pendulum, respectively. Introducing eq. (3) 
and expand nonlinear terms (sinφ and cosφ) in Taylor series (up to 
the third order), for steady states following algebraic equations are 
obtained:
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After some mathematical manipulations we get the phase angles:
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and two equivalent equations for amplitudes of the oscillator:
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Equating them, finally, we get the resonance curve which de-
scribes the pendulum oscillations in the steady state:
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Detailed derivation of HBM and solution stability analysis is 
shown in the paper [10]. It should be noticed, that HBM gives reli-
able results near main parametric resonance and for weakly nonlinear 
system, only.

3.2.	 Full absorption condition

If, we assume that A=0 (oscillator doesn’t vibrate) in equations, 
the algebraic equations yield:

	 − ( ) −( ) =µλ ϑ φ φ φ/ cos cos ,2 22 2
2 1 1B q 	 (12)

	 µλ ϑ φ φ φ/ sin sin ,2 22 2
2 1 1( ) −( ) =B q 	 (13)

	 ϑ λ λ/ / ,2 8 02 2( ) − + ( ) =B 		  (14)

	 α ϑ2 2 0/ .( ) = 	 (15)

Based on equation (15), we can conclude, that the full elimina-
tion of oscillator’s motions condition is possible if damping of the 
pendulum equals α2=0, or if the system does not vibrate (i.e. trivial 
solutions A=0, B=0 and ϑ=0). Then amplitude of pendulum motion 
can be calculated from eqs. (12)–(13) and eq. (14): 

	 B q B1
2

2 2
2

2

2

8 8 2
=

( )
=

− ( )
µλ ϑ

λ ϑ
λ/

,
/

. 	 (16)

Comparing the amplitudes in equation (16), the two frequency 
excitation for full absorption effect are obtained:
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However, ϑ2 is located beyond the main parametric resonance. 
Therefore, ϑ1 denotes true amplitude for full absorption condition. 

Fig. 1. Scheme of an autoparametric pendulum vibration absorber.
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4. Absorption effect

4.1.	 Analysis of full vibration absorption effect (FVAE)

First, we analyse the FVAE of oscillator’s motions. For data taken 
from [10]: α1=0.1, α2=0, µ=15.2, λ=0.25, q=0.05, the analytical full 
absorption frequency, calculated from eqs. (17), is equal to ϑ1=0.997, 
and amplitudes of the pendulum B1=0.23. The analytical resonance 
curves (eqs. (9)–(11)) for full absorption vibration effect are presented 
in Figs. 2. Close ϑ=1, the dynamical elimination of oscillator’s vibra-
tion caused by the pendulum swinging is clearly visible. The analyti-
cal resonance curves are in a very good accordance with numerical 
verification [10].

Figure 3 shows numerical verification of FVAE. The amplitude of 
the oscillator tends to zero (Fig. 3a), while pendulum execute periodic 
swinging about amplitude equal φ=0.23, which agrees with analytical 
results. Additionally, we can conclude, that frequency ratio between 
oscillator and pendulum equals two. The initial conditions of system 
were set: φ=0.1, φ′=0, x=0 and x′=0.

If the pendulum does not vibrate (i. e. B=0), then it plays just the 
role of an additional mass of the oscillator. The value of its amplitude 
can be estimated by the classical relationship for excited linear oscil-
lator:

	 A q
=

+ −( ) +1 21
2 2 4α ϑ ϑ

. 	 (18)

This formula is identical to that obtained from eqs. (4)–(7), if we 
put B=0. In our example this amplitude, for ϑ=0.997 equals A=0.5 
which is consistent with result in Fig. 2a.

4.2.	 Influence damping on absorption effect

In practice, FVAE is difficult to obtain because of existing fric-
tion related to damping in pivot of the pendulum. In this section we 
analyse the influence of system damping on the absorption effect. In 
Figs. 4, the influence of oscillator’s damping on the oscillator (Fig. 
4a) and the pendulum (Fig. 4b) behaviour is shown. Interesting, that 
increase of oscillator’s damping does not eliminate dynamic absorp-
tion region, but only reduces it (Fig. 4a). This is very important from 
dynamic elimination vibrations point of view. This suggests to use 
this parameter to control the system behaviour.

However, the increase in pendulum’s damping causes reduction 
of the pendulum amplitude (Fig. 5b), but absorption effect completely 
disappears (Fig. 5a). This denotes, pendulum’s damping may impair 
the efficiently of AVPA.

The obtained results show that the best absorption effect exists 
for small values of system’s damping and absorption region is located 
near the main parametric resonance. Therefore, the dynamic pendu-
lum damper should be properly designed to take system’s damping 
parameters into consideration. The numerical and experimental veri-
fication of these results can be found in [3, 4].

5. Conclusions and final remarks

The vibration absorption effect by application of an autoparamet-
ric coupled pendulum is investigated in this paper. In the system, the 
motions of the pendulum and the oscillator are coupled therefore vi-
bration absorption depends on dynamics of both subsystems. Near 
the autoparametric resonance region, the most effective absorption 
region is located. Analytical and numerical studies have shown that 
full absorption effect is possible if the damping of the pendulum is 
near to zero. The absorber can be highly efficient for correctly tuned 
subsystems.

Fig. 2. Analytical resonance curves for full absorption effect.

Fig. 4. Influence oscillator’s damping on absorption effect (a) and pendulum 
swings (b) for α2=0.002, µ=6, λ=0.3, q=0.2.

Fig. 5. Influence pendulum’s damping on absorption effect (a) and pendulum 
swings (b) for α1=0.1, µ=6, λ=0.3, q=0.2.

Fig. 3. Numerical verification of full absorption condition for ϑ=0.997, time 
history of oscillator (a) and pendulum (b).

(a) (b)

(a) (b)

(a) (b)
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The damping analysis shows, that the increase of pendulum’s 
damping can reduce or eliminate the absorption region, while the in-
crease of oscillator’ damping only reduces the absorption. Therefore, 
the control method of AVPA by oscillator damping as a control param-
eter looks promising. 

A smart suspension consisting of SMA spring together with MR 
damper leading to active dynamic vibration absorber will be prepared 
in the future.
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