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The dynamics of the cutting process with duffing nonlinearity

DYNAMIKA PROCESU SKRAWANIA Z NIELINIOWOŚCIĄ DUFFINGA*
The paper presents the nonlinear one degree of freedom model of cutting process. To describe the dynamics the Duffing model 
with time delay part is used. The model is solved analytically by using the multiple time scale method. The stability lobe diagrams 
are determined numerically and analytically. The obtained results show that stability region depends on initial conditions of the 
system.
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W artykule przedstawiono jednowymiarowy nieliniowy model skrawania. Do opisu procesu przyjęto model Duffinga z opóźnie-
niem czasowym. Model rozwiązano analitycznie za pomocą metody wielu skal czasowych. Wykres stabilności otrzymano nume-
rycznie i analitycznie. Wykazano, że obszary stabilności zależą od warunków początkowych układu.
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1. Introduction

Systems with time delays are of interest when modelling proc-
esses in engineering, finance, and others [3]. They belong to a class 
of systems in which the current state of the process is an effect of 
the former state, delayed in time. Sometimes, the time delay is in-
troduced into the system for control purposes. The mathematical 
description of delay dynamical systems naturally involve the delay 
parameter in some specified way. A differential equation with delay 
(DDE) describing a dynamical system belongs to the class of retarded 
functional differential equations (sometimes the equations are called 
retarded differential-difference equations - RDDE) [4]. The Duffing’s 
oscillator is the simplest model of the dynamical behaviour of many 
complex systems. The equation with added delay part can be used of 
a model of cutting process [1]. In the turning process, a cylindrical 
workpiece rotates with a constant angular velocity, and the tool gener-
ates a surface as material is removed. The cutting force, which is a 
strong function of the chip thickness, becomes strongly dependent on 
the tool’s delayed position x(t-τ) as well as its current position x(t). 
Thus, to represent such a phenomenon, delay differential equations 
have been widely used as models for regenerative machine tool vibra-
tion (regenerative chatter).

Several phenomena occur during machining which adversely af-
fect the course of the machining process, as well as tool life and sur-
face quality. The main reason for these adverse events is self-excited 
vibration caused by the regenerative effect. This effect is caused by 

the overlap in the preceding trace tool to the passage trace from the 
current transition tools. The research has been conducted to increase 
productivity in machining processes, predict and avoid regenerative-
type chatter. 

In this paper we present the one degree of freedom model of a cut-
ting process which is described by the Duffing’s equation with time 
delay. The analytical study with numerical examples of chatter in-
vestigation is performed. Based on numerical simulation, the stability 
lobe diagram are constructed and compared with numerical results. 
The method of multiple scales (MMS) is used to solve the problem 
analytically. This method was also applied to do research on similar 
Duffing’s system with time delay and external excitation [10].

2. Model of cutting

Here, the classical Duffing oscillator is connected with a time de-
lay element to model regenerative effect in the cutting process [5]. 
Then, the model of regenerative cutting with nonlinear stiffness is 
presented in (Fig. 1). Vibrations that occur during machining can be 
described by delay differential equations (DDE) with shifted argu-
ment in the form:

	 ′′ + ′ + + = − + −[ ]x t x t x t x t x t x t( ) ( ) ( ) ( ) ( ) ( )δ ω γ α µ τ0
2 3 ,      (1)
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where:	 δ is damping coefficient, γ is nonlinear stiffness, ωo is 
natural frequency of the linear system. A cutting force 
is represented by the right side of the equation  where,  
α is a specific cutting force factor, τ is time delay, µ is 
switching parameter which for the regenerative model of 
cutting is equal to one. The term with time delay represents 
a solution at previous state.

Chatter vibrations are the main problem occurring during cut-
ting process [2, 6, 11], therefore this aspect is analysed here. In order 
to find stable cutting regions and the amplitude of chatter vibrations 
which exist in instability zones, an analytical and numerical solution 
of equation (1) and influence of the process parameters are determined 
in next sections.

3. Analytical solution 

The system described by Eq. (1) is solved analytically with the 
help of the multiple time scale method [8, 9], we confine the study 
to the case of small damping and weak nonlinearity.  We assume two 
scales (fast and slow) expansion of the solution. A fast scale T0  and 
slow scale T1  are described by eq. (2), then a solution in the first order 
approximation is sought in the form (3) and (4):

	 T t T t0 1= =, ε ,	 (2)

	 x t x T T x T T( ) ( , ) ( , )= +0 0 1 1 0 1ε ,	 (3)

	 x t x x T T x T T( ) ( , ) ( , )− = = +τ ετ τ τ0 0 1 1 0 1 .	 (4)

It is assumed that:

	 ω ω εσ γ εγ α εα δ εδ0
2 2= + = = =, , , 

 ,	 (5)

where:	 ε is a formal small parameter [7]. Next, in order to 
facilitate notation, the tilde is omitted. By using the chain 
rule, the time derivative is transformed according to the 
expressions (6) and (7):
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Substituting eqs.(2) – (7) into (1) we let:
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Expanding derivatives of the equation (8) we obtain (12):
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Equating coefficients of powers of ε 0 and ε1 , we obtain:
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It is convenient to express the solution of equation (13) in the 
complex form (15) and (16):

	 x T T A T e A T eiT iT
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where:	 A  is the complex conjugate of A , which is an arbitrary 

complex function of 1T .

Substituting equations  and  into equation  and expanding deriva-
tives we get:

	 ∂
∂

= − −x
T

A T ie A T ieiT iT0

0
1 1

0 0( ) ( ) ,	 (17)

	 ∂
∂ ∂

= ′ − ′ −
2

0

0 1
1 1

0 0x
T T

A T ie A T ieiT iT( ) ( ) ,	 (18)

and then the following equation is obtained:

Fig. 1. Model of regenerative cutting with Duffing’s stiffness
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Ordering equation (19) we get its final form:
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The secular term of equation (20) vanishes if and only if equations 
(21) are complied. This leads to the equations (22) and (23):
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where:	 ST1 and ST2 are secular generating terms.
Eliminating from equation  the secular generating terms we have 

equation (24):
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Solving (24) for:

	 x T T B T e B T eiT iT
1 0 1 1

3
1

30 0( , ) ( ) ( )= + − ,	 (25)

	 x T T B T e B T ei T i T
1 0 1 1

3
1

30 0
τ

τ τ( , ) ( ) ( )( ) ( )= +− − − ,	 (26)

where:

	 B T A T( ) ( )
1

1
3

2 9
= −

−

γ
ω

,	 (27)

	 B T A T( ) ( )
1

1
3

2 9
= −

−

γ
ω

,	 (28)

we obtain:

	 x T T A T e A T eiT iT
1 0 1

1
3

2
3 1

3

2
3

9 9
0 0( , ) ( ) ( )

= −
−

−
−

−γ
ω

γ
ω

,	 (29)

	 x T T A T e A T ei T i T
1 0 1

1
3

2
3 1

3

2
3

9 9
0 0

τ
τ τγ

ω
γ
ω

( , ) ( ) ( )( ) ( )= −
−

−
−

− − − .       (30)

Substitution into equations  and  the polar form of the complex 
amplitude:
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After transformations (35) we obtain (37):
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Then recalling:
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The normal form is obtained:
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Separating real and imaginary parts, the two, so called, modulation 
equations are found:
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Transforming, we obtain the modulation equations in the form  
(42) and (43):
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In a case of a steady state solutions a′=0 and β′=0 then the chatter 
frequency (ω) and amplitude (a) is given as follows:

	 ω ω αµ α τ= + −0 cos 	 (44)
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Chatter frequency (ω) given by equation (44) depends only on 
delay parameters α, τ and natural frequency of linear system ωo. In-
terestingly, the parameter of nonlinearity (γ) and vibrations amplitude 
do not influence the frequency. The amplitude of steady state chatter 
vibrations exist when:

	 α δ2 2 0− > 	 (47)

Assuming, that system parameters are always positive, only for 
α δ> the periodic solution appears. Then the critical value of α can 
be introduced αcr=δ. On the other hand, the amplitude of vibrations is 
equals zero when the system parameters fulfil the condition:

	 α δ α τ2 2 0−( ) − =cos 	 (48)

The amplitudes a1 and a2 represented by equation  and  are dis-
played in Figs. 2 and 3 as maps where colour means value of the 
vibrations amplitude.

The second solution exists only in narrow regions where the first 
solution does not exist. That means that when the condition (47) is 
fulfilled always periodic solution appears in the autonomous delayed 
Duffing’s system regardless time delay. Whereas the condition (48) 

is satisfied (amplitude equals zero) exactly on the border of the lobs 
shown in Fig. 2.

In the next section numerical simulations are done to show when 
the solution presented in this section can appear. 

Fig. 2.	 Analytical calculated amplitude a1 of steady state solution represented 
by equation of (45) versus Ω and α

Fig. 3.	 Analytical calculated amplitude a2 of steady state solution represented 
by equation (46) versus Ω and α

Fig. 4.	 Colour map of amplitude versus Ω and α for initial condition 
x(0)=0.5

Fig. 5.	 Colour map of amplitude versus Ω and α for initial condition 
x(0)=3.5
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4. Numerical results

Since, as it has been shown in the previous section, chatter vibra-
tions can exist always when α crosses αcr=δ. The most interesting, 
from practical point of view, are the initial conditions which favours 
getting high amplitude vibrations. Therefore, the numerical simula-
tions are performed on the basis of DDE  in Matlab-Simulink with 
the help of 4th order Rungge-Kutta procedure with variable integra-
tion time. The system parameters are fixed as follows: γ=0.25, δ=0.1, 
ωo=1, µ=1. The value of vibrations amplitude is presented in Figs. 4 
and 5 as colour map on the of two parameters plot Ω = 2π / τ and α. 

The amplitudes of chatter vibrations are very sensitive on initial 
conditions because the region of unstable cutting is much wider for 
the initial condition x(0)=3.5 than x(0)=0.5. Moreover, vibrations am-
plitudes are bigger as well. Only α<δ guarantees the cutting process 
without chatter vibrations regardless initial conditions. 

5.  Discussion and Final Conclusions

Since chatter vibrations are the main problem in cutting process 
therefore looking for regions of stable technological parameters is a 
primary goal. The linear model of regenerative cutting is well known 

and the derivation of its analytical solution does not introduce difficul-
ties. But in the nonlinear case the system can have more than one pe-
riodic solution and also quasi-periodic, sub-harmonic or even chaotic 
ones. That depends, of course, on the system parameters and addition-
ally on initial conditions. The analytical solutions shown graphically 
in Fig. 2 and 3 represent only steady state periodic solutions. Interest-
ingly, for the analysed system there are no stable lobes, characteristic 
for the linear regenerative model. In the nonlinear model for any time 
delay chatter vibrations exist if delay amplitude α<αcr. The numerical 
analysis is a complement of analytical research. Numerical investiga-
tions allow finding initial conditions regions which do not generate 
chatter vibrations. These regions are very important from practical 
point of view because the safe set of parameters (Ω, α) can be found 
providing the system stays in the proper initial conditions domains.
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