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1. Introduction

Fault or health trend prediction technique has become one of the 
effective ways to protect the safe operation of high reliable systems. 
However complex systems often show complex dynamic behaviors 
and uncertainty, which lead to hardly establishing their precise physi-
cal models. In this case, in order to obtain the satisfactory prediction 
results, time series analysis methods are often used to perform the 
prediction in practice [2, 12, 15, 19, 26]. Among the known non-linear 
time series prediction methods, the effectiveness of statistics theory 
based methods have been demonstrated, such as Artificial Neural Net-
works (ANN), Support Vector Regression (SVR), etc.

ANN has been applied in many fields due to its universal approxi-
mation property. However ANN suffers from local minimum traps, 
difficulty in determining the hidden layer size and learning rate, poor 
capacity for generalization, etc. [8, 10, 32] On the contrary, SVR over-
comes the problems existing in ANN. SVR aims at the global opti-
mum and exhibits better accuracy in non-linear and non-stationary 
time series data prediction due to its implementation of the structural 
risk minimization principle [10, 27, 28]. But complexity of SVR de-
pends not only on the input space dimension, but also on the number 
of sample data. For large sample data, the quadratic programming 
(QP) problem is more complex, it will cost a lot of computing time. 
For this reason, LS-SVR was proposed by Suykens et al. [16, 23] In 
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Least squares support vector regression (LS-SVR) has been widely applied in time series prediction. Based on the case that one 
fault mode may be represented by multiple relevant time series, we utilize multiple time series to enrich the prediction information 
hiding in time series data, and use multi-kernel to fully map the information into high dimensional feature space, then a weighted 
time series prediction method with multi-kernel LS-SVR is proposed to attain better prediction performance in this paper. The 
main contributions of this method include three parts. Firstly, a simple approach is proposed to determine the combining weights 
of multiple basis kernels; Secondly, the internal correlative levels of multiple relevant time series are computed to present the dif-
ferent contributions of prediction results; Thirdly, we propose a new weight function to describe each data’s different effect on the 
prediction accuracy. The experiment results indicate the effectiveness of the proposed method in both better prediction accuracy 
and less computation time. It maybe has more application value. 
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Regresja wektorów wspierających metodą najmniejszych kwadratów (LS-SVR) jest szeroko stosowana w predykcji szeregów 
czasowych. Opierając się na fakcie, że jeden rodzaj niezdatności może być reprezentowany przez wiele relewantnych szeregów 
czasowych, w niniejszej pracy wykorzystano wielokrotne szeregi czasowe do wzbogacenia informacji predykcyjnych ukrytych w 
szeregach czasowych oraz posłużono się metodą uczenia wielojądrowego (multi-kernel) w celu mapowania informacji do wysoko 
wymiarowej przestrzeni cech, a następnie zaproponowano metodę ważonej predykcji  wielokrotnych szeregów czasowych z wy-
korzystaniem wielojądrowej regresji LS-SVR służącą osiągnięciu lepszej wydajności prognozowania.Metoda składa się z trzech 
głównych części. Po pierwsze, zaproponowano prosty sposób określania łącznej wagi wielu jąder podstawowych. Po drugie, 
obliczono wewnętrzne poziomy korelacyjne wielokrotnych szeregów czasowych w celu przedstawienia różnego udziału wyników 
prognozowania. Po trzecie, zaproponowano nową funkcję wagi do opisu różnego wpływu poszczególnych danych na trafność 
predykcji. Wyniki doświadczenia wskazują na skuteczność proponowanej metody zarówno jeśli chodzi o lepszą trafność predykcji 
jak i krótszy czas obliczeniowy. Proponowane rozwiązanie ma potencjalnie dużą wartość aplikacyjną. 

Słowa kluczowe: szereg czasowy, predykcja ważona, regresja wektorów wspierających metodą najmniejszych 
kwadratów (LS-SVR), uczenie wielojądrowe (MKL).
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LS-SVR, the inequality constrains are replaced by equality constrains. 
This way, solving a QP is converted into solving linear equations, and 
the calculation time is reduced significantly. Thus, LS-SVR attracts 
more attention in time series prediction [5, 6, 19, 20, 26, 33].

In many applications of fault or health condition prediction, one 
certain condition may be represented by one major variable and sever-
al relevant variables. In order to achieve satisfactory prediction, these 
auxiliary time series relating to the major time series are utilized to 
enrich the information and improve the prediction accuracy. In this 
case, how to fully present the information hiding in the multiple time 
series data becomes a key issue. The kernel function is used to map 
the input data to high dimensional feature space, so it influences the 
learning performance of LS-SVR, that means a appropriate kernel 
function can more fully present the information in time series data. 
However, LS-SVR with a single kernel function is not a good choice 
to all the data sets, especially for multiple time series data, although 
the kernel parameters can be optimally chosen to enhance the gener-
alization capability.

Some researchers applied Multiple Kernel Learning (MKL) to 
solve the above problems [13, 29]. MKL provides a more flexible 
framework than single kernel. Under the framework, the information 
in time series data can be mined more adaptively and effectively, i.e., 
MKL explicitly learns the weights of basis kernels from different time 
series data sources, and the relationships among them are learned 
meanwhile. Moreover, MKL can avoid the difficulty of appropriate 
kernel function selection. Thus, multi-kernel LS-SVR has better pre-
diction accuracy in practice [13,14]. 

However in order to obtain better prediction results, some prob-
lems which accord to the requirements of applications, should still be 
considered, such as fast and accurate prediction.

(1) In MKL framework, the time series data samples are generally 
learned by a linear convex combination of basis kernels. The reported 
methods of determining the combining weights of basis kernels, such 
as software packages [1] and joint optimization selection algorithm 
[9, 34], are always complex. They are generally unapt for applica-
tions.

(2) Although some researchers also used multiple relevant time 
series to perform prediction [6, 17, 31, 35, 36], different interrelated 
levels between major time series and auxiliary time series have differ-
ent influences on prediction accuracy. It is necessary to determine the 
interrelated levels between them, and they represent the weight values 
of each time series for the prediction.

(3) The original prediction methods always assume that all the 
training time series data have same contribution to the prediction. Ac-
cording to the new information principle [3], the data near the current 
prediction point will affect the prediction much more. Thus, in order 
to achieve more accurate results, each sample data should be weighted 
according to their distance far from the current prediction point.

Thus a weighted prediction method with multi-kernel LS-SVR 
using multiple relevant time series is proposed in this paper. Accord-
ing to the application requirements, we apply three ways to achieve 
better prediction results. One is to compute correlative levels of mul-
tiple relevant time series to represent their different contributions to 
prediction results; Secondly, we propose a weight function to present 
the different influence of each history data on prediction; Finally, we 
establish a new multi-kernel LS-SVR based on time-distance-weight-
ed factor of each time series, and in order to improve the application 
value of the proposed method, a simple approach of determining the 
combining weights of the multiple basis kernels is proposed to reduce 
the calculation time.

The rest of the paper is organized as follows: Section 2 gives a 
brief review of LS-VR and multiple kernel learning (MKL) algo-
rithm; Section 3 proposes the weighted prediction method which in-
cludes three computational approaches: (1) combination coefficients 
of multiple basis kernels, (2) correlative levels of the multiple time 

series, and (3) time-distance-weighted factors of each time series data; 
Section 4 shows simulation and application experiments; and the con-
clusions are drawn in Section 5.

2. A brief review of related work

2.1. Least squares support vector regression

LS-SVR has many advantages, such as simpler algorithm, faster 
operation speed, etc. It is widely applied in regression. The goal of 
LS-SVR is to estimate a function that is as “close” as possible to the 
target values for every data point, and at same time, is as “flat” as pos-
sible for good generalization. The regression principle of LS-SVR can 
be expressed as follows. 

Consider a training data set of n  data points 
1

{ , }
i
n

i ix y
=

 with input 

data d
i Rx ∈ , and Riy ∈
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LS-SVR is to construct the regression function with the following 
form

 f x y w x bT( ) ( )= = +ϕ   (1)

where ϕ( )⋅  is used to non-linearly map the input data to the high 
dimensional feature space , w  is the weight vector and b  is the bias 
term.

According to the structural risk minimization principle[27,28], 
the function regression problem can be represented as a constraint 
optimization problem as follows
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where 1,2,...,ni = , ( , )J w b is the cost function, c is a positive real 

constant (regularization parameter) and Rie ∈  is an error variable. 
In order to solve the above constraint optimization problem, the 

Lagrangian function is constructed by transforming constraint optimi-
zation problems into unconstraint ones
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where αi is the i-th Lagrange multiplier. It is obvious that the optimal 
solution of Eq.(2) satisfies the Karush-Kuhn-Tucker (KKT) condi-
tions. The optimal conditions are expressed as follows
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After eliminating w  and ie  from Eq.(4), we could obtain the solution 
by the following linear equations
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where  K( , ) ( , ) ( ) ( )i j i j i
T
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n -dimensional vector of all ones, I  is a unite matrix and 

[ ]1 2, ,..., T
ny y y=y . Eq.(5) can be factorized into a positive definite 

system[18].
Let / c= +H K I , we get the equations from Eq.(5)

 1
1

n
T

nb
αα

αα
=

+ =







0
H y

 (6)

Then Lagrange dual variables  α and bias term b  are obtained 
solely by
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Any unlabeled input x  can be subsequently regression estimation 
by the following function

  ŷ x k x xi i
i

n
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2.2. Multiple kernel learning algorithm

The selection of kernel function and its corresponding parameters 
is the key issue for prediction accuracy. However no rules have been 
reported to guide the selection in theory. In this case, MKL was pro-
posed by Lanckriet, et al. [13]

In MKL framework, a combined kernel function is defined as the 
weight sum of several individual basis kernels. Researchers proposed 
a variety of methods to integrate multiple basis kernels [30]. The lin-
ear convex combination of basis kernels is most frequently used. In 
this paper, using the equations described by Sonnenburg et al. [24] We 
consider the following form of combined kernel
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is the combining weight of the j -th basis kernel. Obvi-
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 to get unit diagonal matrices.

The key of MKL is to obtain the optimal combining weights 

µ j  
. This problem can be solved as a QCQP problem[34] efficiently 

by general-purpose optimization software packages[14]. Moreover, 
some researchers also applied joint optimization selection algorithms 

to obtain the combining weights µ j  
and the parameters of LS-SVR 

simultaneously. But all the solution methods are complex in practice. 
Thus, we proposed a simple method to fix this problem in this paper.

3. Proposed weighted multiple time series prediction 
method

In this section, we propose a new scheme to obtain better predic-
tion performance. Firstly, we use multiple kernel functions consisting 
of several basis kernels to show the information more effectively in 
the high dimensional mapping feature space. A simple approximate 
approach is presented to compute the combining weights with less 
calculation complexity. Then we propose the weighted prediction 
method. In the method, we calculate the correlation coefficient of 
each time series as weight factor, which present the influence fac-
tor on prediction accuracy with each time series, and based on the 
distance of each time series data far from the current prediction point, 
we weight the effects of the history data on prediction via a modified 
weight function.

3.1. Combination coefficients of multiple basis kernels

In this paper, we apply the new kernel with a linear combination 
of basis kernels, shown as Eq.(9). In order to reduce the computing 
complexity, we propose a simple method to determine combining 
weights, i.e., the combining weights of basis kernels are determined 
according to the root mean squared error (RMSE) of each LS-SVR 
with each single basis kernel. This way, smaller RMSE value will get 
bigger weight value. The RMSE of multiple time series prediction is 
defined as follows
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where M is the number of the relevant parameters, N  is the number 

of original training sample data, and ( )kiy  and ( )ˆ kiy  are the prediction 

value and actual value respectively. The linear combining weights µ j  
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where σ j  is the prediction RMSE of the j-th kernel, σ r
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of the j-th kernel. 
Obviously, the proposed method of calculating combination coef-

ficients has less complexity comparing with the methods described 
in section 2.

3.2. Weight factors of multiple time series

3.2.1. Weight factors of major and auxiliary time series

Multiple relevant time series are used to enrich the information 
in data. However, each time series has different effects on prediction 
because they have different degrees of information which represent 
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the system’s fault or health condition. In this paper, we select the time 
series, which mainly represents the system fault or health state, as 
major time series, the others are auxiliary time series. Then the cor-
relation coefficients between the major time series and the auxiliary 
time series will be computed, and they will be utilized to improve the 
prediction accuracy.

The purpose of correlation analysis is to measure and interpret the 
strength of linear or non-linear relationship between two continuous 
variables [11, 22]. We select the commonly used correlation coeffi-
cients, Pearson correlation coefficient [4, 7], to assess the strength of 
the relationships of multiple relevant time series. The Pearson correla-
tion coefficient computing formula is shown as follows
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where R is the correlation coefficient between bivariate data ix  and 

iy  values ( 1, 2, ..., ni = ), x  and y  are the mean values of the ix  and 

iy  respectively. The Pearson correlation coefficient may be com-
puted by means of a computer-based statistics program “Microsoft 
Excel” using the option “Correlation” under the option “Data Analy-
sis Tools”. Moreover it can also be calculated by Matlab.

3.2.2. Time-distance-weighted factors of each time series

The time series data closing to the current prediction point have 
greater relevance to current prediction, on the contrary, less relevance 
with data far from the current prediction point. Hence, we propose a 
modified weight function to present the different weight factor of each 
historical data. 

According to Ref.[25] and Ref.[37], consider the generation sam-

ple set from the raw time series }{ ,k kx y ( 1, 2, ...,k n= ), we define a 

new weight function of kx  as follows
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where λ is a given parameter, and a small id  can reduce the storage 
of historical data and speed up the training. The objective function is 
expressed as follows
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Then the Lagrangian function is established below
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where αk ≥ 0
 
( 1,2,...,k n= ) are the Lagrangian multipliers.

According to KKT conditions, we can get the following equations
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And then rewrite Eq.(5) with a new form as follows
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4. Experiments and results analysis

We conduct two simulation experiments and one application ex-
periment to evaluate the performance of proposed method. The pre-
diction experiments are run 100 times and the averages results are 
taken. All the experiments adopt MatlabR2011b with LS-SVMlab1.8 
Toolbox (The software and guide book can be downloaded from 
http://www.esat.kuleuven.be/sista/lssvmlab) under Windows XP op-
erating system. 

4.1. Simulation experiments and results analysis

The simulation experiments include Experiment I and Experiment 
II. They are conducted to test the proposed method presented in sec-
tion 3. All the simulation experiments are performed using Lorenz 
function, because Lorenz function is a typical time series and its vari-
ables depend on each other. Lorenz function’s corresponding differen-
tial equations are shown as follows

 

( )

x ax yz

y b y z

z xy cy z

′ = − +

′ = − −

′ = − + −






Let 8 / 3a = , 10b = , 28c = , range of initialization as [1,1,1], and 
simulation step as 0.1 with Fourth-oder Runge-Kutta method. We col-
lect 800 data of the three time series of x  (major time series), y  and 
z  (auxiliary time series) respectively. We select the first 400 data of 
x , y and z  time series as training data and the last 400 time series 

data are testing data. In addition, we apply C-C method[21] to gener-
ate training sample sets because Lorenz time series is chaotic time 
series. The prediction efficiency depends on the RMSE, training time 
(TrTime) and prediction time (PrTime). One Gaussian RBF 

K x y
x y

( , ) exp( )= −
− 2

22σ
 and one Linear kernel function ( , ) TK x y x y=

 

are adopted as basis kernel functions. All the parameters will be joint-
ly optimized by traditional gridding search method with rang of 
[0.1, 1000]

In Experiment I, we use variable x  time series alone to do pre-
diction with tradition multi-kernel LS-SVR reported in Ref.[35] and 
Ref.[36]. This experiment compares the following two methods: one 
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is obtains the combining weights via optimization software packages 
(called Method A); the other one is the proposed simple approximate 
approach in section 3.1(called Method B). The results are shown in 
Figure1 and Table 1. 

From Figure1 and Table 1, we can see that although the predic-
tion accuracy of the new simple computing method (Method B) is ad-
equately reduced comparing with Method A, it also has a good results. 
Method B can greatly reduce the total computing time, especially 

training time. The results also indicate that the proposed approximate 
method is an effective method.

In Experiment II, the variables y and z  time series are utilized to 
enrich the information of variable x  time series. We use same multi-
kernel LS-SVR model to compare the following methods: Method C 
doesn’t consider the different contributions of each time series and 
their history data on prediction; Method D applies the proposed ap-
proach proposed in section 3.2. Here, we select same kernel functions 
and optimization method as Experiment I. The results are reported in 
Table 2, Figure 2 and Table 3.

Figure 2 and Table 3 show that the weighted time series prediction 
method can improve the prediction accuracy efficiently, and the com-
puting time is not large increase. These are due to that the proposed 
method takes the different influence factors on prediction accuracy 
with each auxiliary time series and their history data into account. 
The other reason is that almost all the middle values at the calculation 
process of weight factors are already computed and stored in the proc-
ess of setting up the prediction method.

4.2. Application experiment and results analysis

We apply the proposed method in a prediction application of one 
complex avionics system. Four relevant variables time series are col-
lected. They are shown in Figure 3 after preprocessing (omit dimen-
sion).

We take the first 15 data of each time series as training samples 
and look at any continuous 6 as a sample, i.e., the data points from 
1 to 15 in the time series are taken as the 10 initial training sample 
data. The first sample data set consists of points 1 through 6, with the 
first 5 as the input sample vector and the 6th point as the output. The 
second sample data set consists of points 2 through 7, with the points 
2 through 6 as the input sample vector and the 7th point as the output. 
This way we have 10 training data out of the first 15 data points.

Fig. 1. Prediction Results with Method A and Method B

Table 1. Prediction Results of Method A and Method B

x TrTime/s PrTime/s RMSE

Method A 4.1501 0.2406 2.2258

Method B 3.0480 0.2456 2.8927

Fig. 2. Prediction Error of Method C and Method D

Table 2. Correlation Coefficient of Time Series

xyr xzr

Correlation Coefficient -0.0581 -0.0348

Table 3. Prediction Results of Method C and Method D

x TrTime/s PrTime/s RMSE

Method C 8.0479 0.8016 2.1765

Method D 9.1241 0.8203 2.0252

Fig. 3. Raw Time Series of Complex Avionics System
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All the parameters are set same as simulation Experiments I and 
II. The contrast prediction experiment applies Method A and Method 
E (described in Section 3). The prediction results of the major time 
series (see Figure 3) are shown in Figure 4 and Figure 5.

In order to show the results clearly, we report them in Table 4 and 
Table 5.

From Figure 4, Figure 5 and Table 5, we can see that the proposed 
method has better prediction results in prediction accuracy and com-
puting time. The results also indicate the proposed method is a good 
approach, and it can adapt the application better.

5. Conclusions

In this study, we aim at the requirements of applications and ana-
lyze the drawbacks of multiple time series prediction by LS-SVR, 
and then we propose a novel weighted multiple time series predic-
tion method based on multi-kernel LS-SVR. In the new method, we 
determine the combining weights of each basis kernels by calculating 
the root mean squared error (RMSE) of prediction using each basis 
kernel, compute the different contributions to prediction results via 
correlation analysis between the major time series and auxiliary time 
series, and make the each historical data with different weight fac-
tor based on their distance far from the current prediction point via a 
modified weight function. The results of simulation and application 
experiments show that the proposed prediction scheme is an effective 
approach. It can satisfy the application requirements and may be more 
valuable in practice.

Fig. 4. Results with Method A and Method E

Table 4. Correlation Coefficient of the Time Series

1r 2r 3r

Correlation 
Coefficient 0.2791 0.8514 0.6065

Table 5. Prediction Results of Method A and Method E

TrTime/s PrTime/s RMSE

Method A 1.4322 0.0808 0.6771

Method E 1.2927 0.0122 0.5789

Fig. 5. Error with Method A and Method E

Acknowledgments: 
 This work is supported by the National Basic Research Program 
of China (973 Program), the National Natural Science Founda-

tion of China (No. 61001023 and No. 61101004), Shaanxi Natural 
Science Foundation (2010JQ8005), Aviation Science Foundation of 
China (2010ZD53039), and the Natural Sciences and Engineering 

Research Council of Canada (NSERC).

References

1. Andersen ED, Andersen AD. The MOSEK interior point optimizer for linear programming: an implementation of the homogeneous algorithm. 
In High performance optimization  Norewll, Frenk H, Roos C, Terlaky T, Zhang S (eds.), Kluwer Academic Publishers, 2000.

2. Caesarendra W, Widodo A, Pham Hong Thom, Bo-Suk Yang, Setiawan JD. Combined Probability Approach and Indirect Data-Driven 
Method for Bearing Degradation Prognostics. IEEE Transactions on Reliability 2011; 60(1):14–20.

3. Deng JL. The primary methods of grey system theory. Wuhan: Huazhong University of Science and Technology Press, 2004.
4. Freund JE. Mathematical statistics (5th ed.) Upper Saddle River, NJ: Prentice Hall,1992.
5. Guo HB, Guan XQ. Application of Least Squares Support Vector Regression in Network Flow Forecasting. The 2nd International Conference 

on Computer Engineering and Technology, April, 2010.
6. Guo YM, Zhai ZJ, Jiang HM. Weighted prediction of multi-parameter chaotic time series using least squares support vector regression. 

Journal of Northwestern Polytechnical University 2009; 27(1):83–86.
7. Goldman RN, Weinberg JS. Statistics: an introduction. Upper Saddle River, NJ: Prentice Hall, 1985.



sciENcE aNd tEchNology

194 Eksploatacja i NiEzawodNosc – MaiNtENaNcE aNd REliability Vol.15, No. 2, 2013

8. Hansen JV, Nelson RD. Neural networks and traditional time series methods: A synergistic combination in state economic forecasts. IEEE 
transactions on Neural Networks 1997; 8(4):863–873.

9. Jian L, Xia Z H, Liang X J, Gao C H. Design of a multiple kernel learning algorithm for LS-SVM by convex programming. Neural Networks 
2011; (24):476–483.

10. Kecman V. Learning and soft computing: support vector machines, neural networks, and fuzzy logic models. Cambridge, MA,USA: MIT Press, 2001.
11. Krzanowski WJ. Principles of multivariate analysis: a user’s perspective. Oxford, England: Clarendon, 1988.
12. Liu DT, Wang SJ, Peng Y, Peng XY. Online adaptive status prediction strategy for data-driven fault prognostics of complex systems. 2011 

IEEE conference on autotestcon, Sep. 2011.
13. Lanckriet GR, Cristianini N, Bartlett P L, Ghaoui L E, Jordan M I. Learning the kernel matrix with semidefinite programming. Journal of 

Machine Learning Research 2004; (5):27-72.
14. Li M, Xu JW, Yang JH, Yang DB. Prediction for chaotic time series based on phase reconstruction of multivariate time series. Journal of 

University of Science and Technology Beijing 2008; 30(2): 208–211,216.
15. Michael P, Rubyca J. A prognostics and health management roadmap for information and electronics-rich systems. IEICE Fundamentals 

Review 2010; 3(4 ):25–32.
16. Muller KR, Smola AJ, Ratsch G, et al. Predicting time series with support vector machines. Artificial Neural Networks 1997; 1327(4):999-1004.
17. Nazih AS, Fawwaz E, Osama M A. Medium-term electric load forecasting using multivariable linear and non-Linear regression. Smart Grid 

and Renewable Energy 2011; 2:126-135.
18. Ojeda F, Suykens J, De MB. Low rank update LS-SVM classifiers for fast variable selection. Neural Network 2008; 21:443-449.
19. Qu J, Zuo MJ. An LSSVR-based algorithm for online system condition prognostics. Expert Systems with Applications 2012; 39(5):6089-6102.
20. Qu J, Zuo MJ. An LSSVR-based machine condition prognostics algorithm for slurry pump systems. Proceedings of the Canadian Society for 

Mechanical Engineering Forum 2010, June, 2010.
21. Qin Y Q, Cai WD, Yang BR. Research on phase space reconstruction of non-linear time series. Journal of System Simulation 2008; 20(11): 

2969–2973.
22. Rodriguez RN, Correlation. In: Kotz S, Johnson N.L., eds. Encyclopedia of statistical sciences. New York, NY: Wiley, 1982.
23. Suykens JAK, Van GT, De BJ, De MB, Vandewaller J. Least squares support vector machines. World Scientific Publishing, 2002.
24. Sonnenburg S, Räosch G, Schäer C, Schökopf B. Large scale multiple kernel learning. Journal of Machine Learning Research 2006; 7:1531–1565.
25. Suykens JAK, Vandewalle J. Least square support vector machines. IEEE Transactions on Circuits and Systems-I 2000; 47(7):1109–1114.
26. Tay FEH, Cao L. Application of support vector machines in financial time series forecasting. The International Journal of Management 

Science (Omega) 2001; 29: 309–317.
27. Vapnik V. The nature of statistical learning theory. New York, USA Springer Verlag,1995.
28. Vapnik V. Statistical learning theory. John Wiley and Sons, New York, 1998.
29. Wang Z, Chen S, Sun T. MultiK-MHKS: A novel multiple kernel learning algorithm. IEEE Transactions on Pattern Analysis and Machine 

Intelligence 2008;30(2):348–353.
30. Wang H Q, Sun F C, Cai Y N, Chen N, Ding L G. On multiple kernel learning methods. Acta Automatica Sinica 2010; 36(8):1037–1050.
31. Ye M Y, Wang X D, Zhang H R. Chaotic time series forecasting using online least squares support Vector machine regression. Acta Physica 

Sinica 2005; 54(6):2568-2573.
32. Zhao X H, Wang G, Zhao K K, Tan D J. On-line least squares support vector machine algorithm in gas prdecion. Mining Science and 

Technology 2009; 19:194-198.
33. Zhao Y H, Zhong P, Wang K N. Application of least squares support vector regression based on time series in prediction of gas. Journal of 

Convergence Information Technology 2011; 6(1):243-250.
34. Zhang W M, Li C X, Zhong B L. LSSVM parameters optimizing and non-linear system prediction based on cross validation. The fifth 

International Conference on Natural Computation, Aug, 2009.
35. Zhang X R, Hu L Y, Wang Z S. Multiple kernel support vector regression for economic forecasting. International Conference on Management 

Science & Engineering (17th), November, 2010.
36. Zhang J F, Hu S S. Chaotic time series prediction based on multi-kernel learning support vector regression. ACTA Physica Sinica (Chinese 

Physics) 2008; 57(5):2708–2713.
37. Zheng XX, Qian F. Based on the support vector machine online modeling and application. Information and Control 2005; (5):636–640.

associate prof. yang-ming guo, ph.d. 
cong-Bao ran, master candidate
Xiao-lei li, master candidate
associate prof. jie-zhong ma
lu zhang, master candidate
School of Computer Science and Technology
Northwestern Polytechnical University
Youyi West Road 127, Xi’an Shaanxi, 710072
P. R. China
E-mails: yangming_g@nwpu.edu.cn (Y. M. Guo), fengmingr@gmail.com (C. B. Ran),  
465628547@qq.com (X. L. Li), majz@nwpu.edu.cn (J. Z. Ma), 956046544@qq.com (L. Zhang)


