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Trajectory planning of end-effector with intermediate point

Planowanie trajektorii ruchu chwytaka z punktem pośrednim*
The article presents the Polynomial Cross Method (PCM) for trajectory planning of an end-effector with an intermediate point. 
The PCM is applicable for designing robot end-effector motion, whose path is composed of two rectilinear segments. Accelera-
tion profile on both segments was described by the 7th-degree polynomial. The study depicts an algorithm for the method and the 
research results presented as the runs of resultant velocity, acceleration and linear jerk of the stationary coordinate system.
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W pracy zaprezentowano metodę PCM (Polynomial Cross Method) do planowania trajektorii ruchu chwytaka z punktem pośred-
nim. PCM ma zastosowanie do planowania ruchu chwytaka, którego tor składa się z dwóch odcinków prostoliniowych. Profil 
przyspieszenia na obu odcinkach opisany został wielomianem siódmego stopnia. W pracy przedstawiono algorytm metody oraz 
wyniki w postaci przebiegów prędkości, przyspieszenia i udaru liniowego.

Słowa kluczowe: planowanie trajektorii, chwytak, wielomianowy profil przyspieszenia, udar.

1. Introduction

Trajectory planning proves to be the first and critical phase in the 
operation of robotic workstations (such as supporting of machines, 
painting, welding, sealing, gluing, cutting, assembly, palletization and 
depalletization). This problem has been an active field of research 
and consequently vast literature addresses the issue. The authors have 
applied various techniques for trajectory generation. Some of them 
considered the minimization of adverse jerk that causes the practi-
cal limitation of trajectory mapping errors. The works of Visioli [10] 
and Dyllong and Visioli [3] highlight the unfavourable jerk effects 
at the initial and final point of the path for the cubic and third-order 
trigonometric splines. Interestingly, in some cases, jerk reduction was 
achieved by the fourth-order trigonometric spline introduction. One 
of the criteria for optimization of motion path design given by Choi et 
al. [2], was to keep the jerk within the specified limits. The obtained 
jerk profiles in the kinematic pairs are discontinuous and step shaped. 
At the initial and final point of the trajectory, the jerk is different from 
zero. Red [7] using the S-curves applied the constant (but different 
from zero) jerk values at the transition period between the constant 
phases of acceleration and deceleration. The analysis of the link ac-
celeration profiles for Puma 560 manipulator presented by Rubio et 
al. [8] indicates that negative jerk effect in the kinematic pairs occurs 
at the initial and final point of the trajectory. That agrees with the ob-
servations made by Saramago and Ceccarelli [9] in their study on jerk 
runs in the kinematic joints. According to Huang et al. [5], the jerk 
profiles in the kinematic pairs at the both start and end points motion 
are close to zero. The method proposed by Olabi et al. [6], generates 
smooth jerk limited pattern constrained by the laws of tool motion and 
taking into account the joints kinematics constraints. Very interesting 
research results on the jerk runs in kinematic pairs were reported by 
Gasparetto and Zanotto [4]. They obtained not only continuous jerk 
for the applied fifth-order-B-splines, but importantly, its values at the 
start and end path point were equal zero. The higher degree poly-
nomials to describe acceleration profile were applied by Boryga and 
Graboś [1]. The authors analyzed the runs of velocity, acceleration 
and jerk for polynomials of the 5th, 7th and 9th degree. On the basis of 

the simulation tests performed, they achieved the lowest values of the 
linear and angular jerks for the 7th-degree polynomials. 

The authors proposed the Polynomial Cross Method (PCM) algo-
rithm, which allows the design of trajectory comprising two rectilin-
ear segments in the robot workspace. There were formulated the fol-
lowing assumptions concerning the manipulator end-effector motion:

acceleration profile on both rectilinear segments depicted with •	
7th-degree polynomial,
acceleration profile at the initial and end path points is tangent •	
to the time axis that eliminates adverse jerk effect,
change of run-up phase into brake one occurs at the intermedi-•	
ate point,
linear acceleration value for any coordinate does not exceed •	
the preset maximum value amax,
end-effector motion proceeds so that resultant velocity does •	
not change at the intermediate point (where rectilinear seg-
ments connect).

As a consequence of the presumed constant resultant velocity val-
ue at the intermediate point, resultant acceleration is equal to zero. It 
is noteworthy that at the intermediate point, a direction of the resultant 
velocity vector gets changed due to the preset path of the end-effector. 
Substantial advantage of the presented algorithm proves to be a fact 
that coefficients of the polynomials depicting the acceleration profile 
on any coordinate are established solely on coordinate increment and 
preset maximum acceleration. In general, the jerk elimination at the 
initial and final trajectory point influences the accuracy of trajectory 
mapping. That appears to be very helpful as far as technological proc-
esses such as pick and place, painting, assembly, welding, sealing, 
gluing, palletization and depalletization are concerned. Layout of the 
paper comprises the following sections: Section 2 depicting a trajec-
tory planning technique with the 7th-degree polynomial application 
utilizing the root of an equation multiplicity; Section 3 presenting an 
algorithm, which was divided into initial computations, computations 
for a longer and shorter rectilinear segment and final computations; 
Section 4 demonstrates the example of the proposed algorithm practi-
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cal employment, while Section 5 summarizes the simulation results. 
The conclusions are presented in the last section of the paper.

2. Trajectory planning with polynomial use

The planning of robot end-effector trajectory can be accomplished 
by using higher-degree polynomials, that facilitate acceleration pro-
file development. The study of Boryga and Graboś [1] showed that 
among the polynomials of 5th, 7th and 9th-degree describing the ac-
celeration profile, the lowest values of linear and angular jerks were 
reported for the 7th-degree polynomial. Therefore in this paper, the 
acceleration profile on coordinate xi is described with the 7th-degree 
polynomial in the form of

	
2 3 2( ) ( ) ( 0.5 ) ( )i i e ex t a t t t t t= − ⋅ ⋅ − ⋅ − 	 (1)

where: 	 ia  – coefficient of polynomial on coordinate xi,
	 i =1, 2, 3 – coordinate number,
	 te – time of motion end.

Acceleration profile described with the 7th-degree polynomial is 
presented in Fig. 1.

Acceleration profile is depicted by a continuous function for 
each coordinate of the Cartesian coordinate system – xi. Change 
of the run-up phase into brake phase proceeds at t=0.5te and the 
acceleration profile for t=0, t=0.5te  and t=te is tangent to the time 
axis. Thus, jerk effect is eliminated at these points. The polyno-
mials describing the profiles of velocity and displacement deter-
mined through analytical integration of the dependence (1) go as 
follows: 

	 8 7 2 6 3 5 4 4 5 31 1 19 5 1 1( )
8 2 24 8 4 24i i e e e e ex t a t t t t t t t t t t t = − ⋅ − + − + − 

 
    (2)

 9 8 2 7 3 6 4 5 5 41 1 19 5 1 1( )
72 16 168 48 20 96i i e e e e ex t a t t t t t t t t t t t = − ⋅ − + − + − 

 
 

(3)
The obtained value xi(t) is a distance tracked by the robot end-
effector on the coordinate i. In order to establish the end-effector 
coordinate at any moment of time, the following points should be 
taken into account initial coordinate of end-effector on coordinate 
i – denoted as xbi, and direction of end-effector motion concord-
ant or discordant with the axis versor orientation. The end-effector 
coordinate on the coordinate i is defined by the equation

9 8 2 7 3 6 4 5 5 41 1 19 5 1 1( )
72 16 168 48 20 96i bi i e e e e ex t x a t t t t t t t t t t t = ± ⋅ − + − + − 

 
 (4)

If the end-effector motion is concordant with the versor of the 
axis i, the plus sign should appear in the equation and the minus one 
if it is discordant.

3. Planning trajectory with intermediate point

3.1.	 Polynomial Cross Method (PCM)

PCM is employed to generate end-effector trajectory whose path 
is composed of two connected rectilinear segments BM and ME (Fig. 
2). Implementation of polynomial acceleration profile of the robot 
end-effector defined with the equation (1) for the preset segments BM 
and ME could cause that the end-effector velocity at the intermediate 
point was equal to zero. Thus, the problem of trajectory motion plan-
ning would be simplified to the motion with a stop at the intermediate 
point M.

For that matter, the ancillary points E′ and B′ are introduced. The 
E′ point arises from the axial symmetry of point B reflected across the 
intermediate point M, whereas the point B′ through the axial symme-
try of the point E reflected across the intermediate point M. Descrip-
tion of acceleration defined by the equation (1) includes the segments 
BE′ and B′E (termed total segments in the algorithm). On both total 
segments, change of the run-up phase into brake one proceeds at the 
intermediate point M. Maximum acceleration of robot end-effector 
was limited to amax value. It was assumed that at the transition from 

the BM segment to the ME one (at the intermediate point M), the re-
sultant velocity does not change, while resultant acceleration is equal 
to zero. Change of the direction and orientation of the velocity vector 
at the point M is imposed by the predetermined trajectory of end-
effector motion. At the intermediate point M, there occured a rotation 
of the resultant velocity vector from the BM direction towards the ME 
direction. The problem can be solved through the introduction of the 
arc connecting the rectilinear segments or an alternative stop in the 
intermediate point. Coefficients of polynomials depicting accelera-
tion profile on the total segments are determined separately for each 
coordinate xi. The motion time is calculated using only the path incre-
ments and preset maximum acceleration – amax. Velocity value at the 
intermediate point is established performing the substition of t=0.5te 
into the dependence describing velocity profile (2). The resultant ve-
locity vector at the intermediate point displaces from one segment to 
the other and projects on the axes of the stationary coordinate system. 
That facilitates the determination of coefficients of a polynomial de-
picting aceleration profile on the other total segment. As the motion 
time on both total segments may vary, it is necessary to perform an 

Fig. 1. Acceleration profile described by a 7th - degree polynomial

Fig. 2. Planned trajectory BME and ME′and B′M ancillary segments
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appropriate translation in the time of acceleration, velocity, displace-
ment and jerk profile.

3.2.	 PCM algorithm 

3.2.1.	 Initial computations

Step 1. Assumption of coordinates of the initial, intermediate and fi-

nal points are denoted by 1 2 3( ; ; )b b bB x x x , 1 2 3( ; ; )m m mM x x x  and 

1 2 3( ; ; )e e eE x x x . The points should belong to the workspace.

Step 2. Determination of the coordinates of ancillary points 
' ' '

1 2 3'( ; ; )b b bB x x x  and ' ' '
1 2 3'( ; ; )e e eE x x x are made on the grounds of de-

pendence

	
' 2b m e

i i ix x x= −    for   i = 1, 2, 3	 (5)

	
' 2e m b

i i ix x x= −    for   i = 1, 2, 3	 (6)

The B′ and E′ ancillary points need not belong to the workspace. 
The ancillary distances B′M and ME′ are used only to construct an ap-
propriate form of the acceleration profile.

Step 3. Determination of path increments on each coordinate of the 
total segments

	
' 'BE e b

i i ix x x∆ = −    for   i = 1, 2, 3	 (7)

	
' 'B E e b

i i ix x x∆ = −    for   i = 1, 2, 3	 (8)

Step 4. Scheduling of the coordinate increments starting from the 
highest, with denotation by subscript in the brackets, in the schedule 
sequence

	
' ' '

{1} {2} {3}
BE BE BEx x x∆ ≥ ∆ ≥ ∆  	 (9)

	
' ' '

{1} {2} {3}
B E B E B Ex x x∆ ≥ ∆ ≥ ∆ 	 (10)

Step 5. Determination of maximum coordinate increment out of BE′ 

and B′E segments and denoting it as {1}
Lx∆ , that is,

	
' '

{1} {1} {1}max{ , }L BE B Ex x x∆ = ∆ ∆ 	 (11)

In the {1}
Lx∆  denotation, a superscript describes the longer total 

segment. If ' '
{1} {1}
BE B Ex x∆ = ∆  increments are equal then '

{1} {1}
BE Lx x∆ = ∆ .

Step 6. Assumption of end-effector maximum acceleration amax on 

the coordinate of the maximum path increment, {1}
Lx∆ . Thus, the ac-

celerations on the other coordinates will not exceed the preset accel-
eration amax that results from lower or equal path increments on these 
coordinates.

3.2.2.	 Computations longer total segment (L)

Step 1. Determination of polynomial {1}
La  coefficient and the end time 

of motion – L
et  on coordinate {1}

Lx  requires solution of the equation 
system 

	

9
{1} {1}

1
2 3 2

1 2 2 2 max

1 ( )

- ( ) ( 0.5 ) ( )

L L L
e

L L L L L L
{ } e e e e e

a t x
c

a c t c t - t c t - t = a

 = ∆




 	 (12)

Having solved the above equation system, the below was obtained:

	

5
max1

{1} 9 31 3 max {1} {1}( ) ( )
L

L L

aca
c c a x x

= ⋅
∆ ∆

 	 (13)

	

1 3 max {1}

max

L
L
e

c c a x
t

a

∆
= 	 (14)

where:

	 1 10080c = , 2
1 1 21
2 14

c -=  , 2 3 2
3 2 2 2

1- (2 -1) ( -1)
8

c c c c=

Step 2. Determination of polynomial coefficients for the other coor-
dinates [1]

	

1
{ } { }9( )
L L
i iL

e

ca x
t

= ∆      for  i = 2, 3	 (15)

Step 3. Determination of components and end-effector resultant ve-
locity at M point

	

8

{ } { }
( )
6144

L
L Le
i M i

tx a=      for  i = 1, 2, 3	 (16)

	

8 3
2

{ }
1

( ) ( )
6144

L
L Le
M i

i

tx a
=

= ∑ 	 (17)

3.2.3.	 Computations shorter total segment (S)

Step 1. Determination of direction cosines between the speed vector 
in the M point and the axes of the stationary coordinate system

	 cos( )

( )

'

'
αi

i
e

i
b

i
e

i
b

i

x x

x x

=
−

−
=
∑ 2

1

3
 if   ' '

{1} {1}
B E BEx x∆ > ∆  	 (18)

	

cos( )

( )

'

'
αi

i
e

i
b

i
e

i
b

i

x x

x x

=
−

−
=
∑ 2

1

3
  if  ' '

{1} {1}
B E BEx x∆ ≤ ∆ 	 (19)
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where: α1– angle between the speed vector at M point and axis xi of 
the stationary coordinate system.
Speed vector orientation comes from a motion direction on a seg-
ment.

Step 2. Determination of speed components in M point

	  x xiM
S

M i= ⋅cos( )α    for  i = 1, 2, 3	 (20)

According to the assumption, the resultant speed value in the M 

point L S
M M Mx x x= =   , does not change.

Step 3. Determination of motion time for shorter total segment

	

105
64

S
S i
e S

iM

xt
x
∆

=


  for i = 1	 (21)

Formula (21) results from a system of equations formed from the 
dependences (15) and (16). The same motion time is obtained when 
appropriate coordinate increments and appropriate velocity compo-
nents at point M are substituted simultaneously. 

Step 4. Determination of polynomial coefficients on each coordinate

	
8

6144
( )

S S
i iMS

e
a x

t
=       for i =1, 2, 3	 (22)

3.2.4.	 Final computations

Step 1. Determination of motion start time on the B′E segment

	 2

L S
e e

b
t tt −

= ± 	 (23)

The time is established so as to obtain the same velocity at exactly 
the same moment in the M point for both move segments. If 

' '
{1} {1}
B E BEx x∆ > ∆ , dependence (23) should acquire the minus sign, the 

opposite case should acquire the plus sign.

Step 2. Time displacement of the polynomial depicting the accelera-
tion profile on the coordinates of B′E distance by tb value

2 3 2( ) ( ) ( 0.5 ) ( )L L L
i i b e b e bx t a t t t t t t t t= − ⋅ − ⋅ − − ⋅ − −  if  ' '

{1} {1}
B E BEx x∆ > ∆

 
(24)

2 3 2( ) ( ) ( 0.5 ) ( )S S S
i i b e b e bx t a t t t t t t t t= − ⋅ − ⋅ − − ⋅ − −  if  ' '

{1} {1}
B E BEx x∆ ≤ ∆

 
(25)

Analogical time displacement should be done for polynomials, 
describing the level of velocity, displacement, and jerk.

Step 3. Determination of motion time on the segments along the BME 
path

	 2

L S
e e

e
t tt +

=  	 (26)

4. Numerical example

The point coordinates for the planned end-effector trajectory B, 
M, E and ancillary points E′ and B′ are presented in Table 1. The path 

increments on each coordinate are: '
1 0BEx∆ = , ' '

2 3 0.5BE BEx x m∆ = ∆ =  , 

' '
1 3 0.5B E B Ex x m∆ = ∆ = , '

2 0B Ex∆ = . Since ' '
{1} {1}
BE B Ex x∆ = ∆ , BE′ will 

be the first segment to study. 

The maximum acceleration set is amax = 2 m/s2 on coordinate x2. 
The polynomial coefficients depicting acceleration level on each co-
ordinate as well as motion time go as following: 

9
{1} {2} 354.616 /L La a m s= = , {3} 0La = , 1.343L

et s= . As for the BE′ 

distance, path increments are recorded for the coordinates x2 and x3 so 

consequently, the established coefficients {1}
La  and {2}

La  refer to these 

coordinates. Resultant speed in M point is 0.864 /L
Mx m s= . The di-

rection cosines of a speed vector in M  point for the B′E segment go as 
follows cos /α1 2 2= , cosα2 0= , cos /α3 2 2= . The velocity 

components in M point on the B′E segment are 1 3 0.611 /S S
M Mx x m s= =   , 

2 0S
Mx = , whereas 1, 2 and 3 indices refer to the axis of the stationary 

coordinate system. Polynomial coefficients describing acceleration 
profile on each coordinate of the B′E segment are 

9
1 3 354.616 /S Sa a m s= = , 2 0Sa = . Move time recorded on the B′E 

segment was 1.343S
et s= . Time of motion along the BME path is 

1.343et s= , while 0bt = .

5. Simulation tests results

According to the simulation tests performed, the following cours-
es of kinematic characteristics of end-effector were recorded (Fig. 3 
– 5). In each figure presented, a continuous line indicates the runs of 
kinematic characteristics of motion for the designed trajectory BME, 
while a dashed line – the courses for ancillary segments (ME′ and 
B′M). A planned motion path and ancillary distances are displayed in 
the stationary coordinate system x1x2x3, whereas kinematic character-
istics of motion at two planes perpendicular to the plane determined 
by the points of the generated BME trajectory.

Fig. 3 displays the runs of end-effector speeds on the BE′ and B′E 

segments. The maximum velocity 0.864 /L S
M Mx x m s= =   is obtained 

at the point M. The speed value at transition from the BM segment to 
ME did not change, while a direction of the resultant velocity vec-

Table 1.	 The point coordinates for the planned trajectory and ancillary points

Point
denotation

Point coordinates [m]

x1 x2 x3

B 0.5 0.5 1

M 0.5 0.75 1.25

E 0.75 0.75 1.5

B′ 0.25 0.75 1

E′ 0.5 1 1.5
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tor changes from BM  path to ME. The runs of end-effector result-
ant linear acceleration on the distances BE′ and B′E are presented in 
Fig. 4. In the points B, M, E acceleration is equal to zero. The obtained 
absolute maximum acceleration at each coordinate does not surpass 
the set value amax = 2 m/s2 and the maximum resultant value reaches 
2.83 m/ s2. A jerk value at points B and E is equal zero (Fig. 5). The 
maximum jerk value is 19.8 m/s3.

6. Conclusions

On the basis of the simulation tests of the manipulator end-ef-
fector motion according to the PCM, the following conclusions were 
formulated:

The profiles of resultant velocity, acceleration and jerk obtained a)	
by the PCM application are continuous on the BM and ME seg-
ments. At the intermediate point M, resultant velocity value 
does not change, consistently with the underlying assumption. 
The velocity vector direction changes according to the motion 
direction (from BM  towards ME). 
Generation of trajectory according to the PCM may be utilized b)	
in some technological processes (pick and place, painting, as-
sembly, welding, sealing, gluing, palletization and depalletiza-
tion), where it is critical to eliminate jerk effect in the initial and 
final point of the trajectory. 
If deformability of kinematic chain occurs, jerk elimination will c)	
result in vibration limitation that guarantees lower tracking er-
rors.

Our further research will focus on the effect of trajectory of the 
robot manipulator end-effector (planned using PCM) on kinematics 
and manipulator dynamics.

Fig. 3.	 Resultant velocity course along planned BME path and ancillary seg-
ments

Fig. 4.	 Resultant acceleration course along planned BME trajectory and an-
cillary segments

Fig. 5.	 Resultant jerk course along planned BME path and ancillary seg-
ments
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