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Reliability and Profit Analysis of a Single-Unit System 
with Preventive Maintenance Subject to Maximum Operation Time

Analiza niezawodności i zysku dla systemu jednoelementowego 
z konserwacją zapobiegawczą poddanego 

maksymalnemu czasowi pracy

This paper deals with the profit analysis of a reliability model for a single-unit system in which unit fails completely either directly 
from normal mode or via partial failure. The partially failed operating unit is shutdown after a maximum operation time for pre-
ventive maintenance. There is a single server who attends the system immediately whenever needed to conduct preventive mainte-
nance at partial failure stage and repair at completely failure stage of the unit. The unit works as new after preventive maintenance 
and repair. The switch devices are considered as perfect. All random variables are assumed as independent and uncorrelated. The 
distribution of failure times, maximum operation time, preventive maintenance time and repair time are taken as general. Various 
reliability characteristics of interest are evaluated by using semi-Markov process and regenerative point technique. The tabular 
represantation of mean time to system failure (MTSF), availability and profit with respect to maximum rate of operation time has 
also been shown for a particular case.

Keywords: single-unit system, reliability, preventive maintenance, maximum  operation time, profit analysis.

W niniejszej pracy przedstawiono analizę zysku modelu niezawodności dla systemu jednoelementowego, w którym element ule-
ga całkowitemu uszkodzeniu bezpośrednio z trybu normalnego lub pośrednio na skutek częściowego uszkodzenia. Częściowo 
uszkodzona działająca jednostka jest wyłączana po upłynięciu maksymalnego czasu pracy w celu przeprowadzenia konserwacji 
zapobiegawczej. Pojedynczy serwer wspomaga bezzwłocznie system w momencie wystąpienia potrzeby przeprowadzenia konser-
wacji zapobiegawczej na etapie częściowego uszkodzenia oraz naprawy na etapie uszkodzenia całkowitego. Element działa jak 
nowy, po konserwacji zapobiegawczej i naprawie. Stan przełączników sieciowych uznaje się za doskonały. Wszystkie zmienne 
losowe traktowano jako niezależne i nieskorelowane. Rozkład czasów uszkodzeń, maksymalnego czasu pracy, czasu konserwacji 
zapobiegawczej i czasu naprawy przyjęto jako ogólne. Wybrane parametry niezawodnościowe oceniano za pomocą procesu semi-
markowskiego i techniki odnowy RPT. Dla poszczególnych przykładów przedstawiono także tabelaryczne zestawienie średniego 
czasu do uszkodzenia systemu (MTSF), gotowości i zysku w odniesieniu do maksymalnego czasu pracy.

Słowa kluczowe: system jednoelementowy, niezawodność, konserwacja zapobiegawcza, maksymalny czas pracy, 
analiza zysku.

1. Introduction

Several researchers including Barlow and Larry [1], Nakagawa 
and Osaki [13], Murari and Goyal [12], Mokaddis et al. [11], Kumar 
et al. [6] and Renbin and Zaiming [14] have probed systems of one 
or more units making the assumption that the operating unit enters 
directly into the failed stage with constant failure rate and whenever 
the unit is under operation, it is continued until it fails.

But, in practice, there are many situations where a unit may fail 
completely either directly from normal mode or via various degrad-
ed stages. The devices subject to wear in reliability and the immune 

system of HIV infected individual in Bio-statistics can be 
considered as examples of such systems. However, continu-
ous operation of a unit for a long time causes defects in the 
unit and increases the maintenance cost. Also, the continued 
operation and ageing of the systems gradually reduce their 
performance, reliability and safety. It can be seen from lit-
erature that preventive maintenance can slow the deteriora-
tion process of a repairable system and restore the system to 
a younger age or state. Therefore, preventive maintenance of 
the systems is necessary after a pre-specific period of time 
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not only to maintain the operational power but may also reduce the 
failure and the degradation rate. 

Keeping above facts in view, present paper deals with the cost-
benefit analysis of a reliability model for a single-unit system in which 
unit fails completely either directly from normal mode or via partial 
failure. The partially failed operating unit is shutdown after a maxi-
mum operation time for preventive maintenance. There is a single 
server who attends the system immediately whenever needed to con-
duct preventive maintenance at partial failure stage and repair at com-
pletely failure stage of the unit. The unit works as new after preventive 
maintenance and repair. The switch devices are considered as perfect. 
All random variables are assumed as independent and uncorrelated. 
The distribution of failure times, maximum operation time, preventive 
maintenance time and repair time are taken as general. Various reli-
ability characteristics for interest are evaluated by using semi-Markov 
process and regenerative point technique. The tabular represantation 
of MTSF, availability and profit with respect to maximum rate of op-
eration time has also been shown for a particular case.

2. Notation

E Set of regenerative states  
O The unit is operative and in normal mode 
PFO The unit is partially failed and operative  
PFPm The unit is partially failed and under preventive  
FUr The unit is failed and under repair  

( ), ( )f t F t
Probability desity function (p.d.f.),Cumulative 
distribution function (c.d.f.) of the failure time 
from normal mode to complete failure    

1 1( ), ( )f t F t
p.d.f.,c.d.f. of the failure time from normal mode 
to partial failure

2 2( ), ( )f t F t
p.d.f.,c.d.f. of the failure time from partial fail-
ure to complete failure 

( ), ( )g t G t
p.d.f.,c.d.f. of the repair time of a failed unit  

( ), ( )z t Z t
p.d.f.,c.d.f. of maximum operation time after 
partial failure

( ), ( )h t H t
p.d.f.,c.d.f.of the preventive maintenance time 
of the unit

* Laplace transforms  

 Convolution

0 1( ) ( ) ( )E t F t F t=        1 2( ) ( ) ( )E t Z t F t=

2 2( ) ( ) ( )E t f t Z t=        3 2( ) ( ) ( )E t z t F t=

The system may be in one of the following states:  

Up states 0 1 2( ) , ( ) , ( )S O S PFO S PFPm  Down states  3( )S FUr  . 
Possible transitions between states along with cumulative distribution 
functions time are shown in Table 1.

3. Reliability Analysis

Let ( )iR t as the probability that the system survives during 

(0, t)  |  0( ) = iE t S . To determine it we regard the failed states as ab-
sorbing state. The equations determining the reliability of the system. 
Hence we have:

0 0 1 1( ) = ( ) ( ) ( )R t E t f t R t+ 

1 1( ) = ( )R t E t 		  (3.1)

By using Laplace transform technique, we can solve for *
0 ( )R s  and 

is given by: 	 * * * *
0 0 1 1( ) = ( ) ( ) ( )R s E s f s E s+ 		  (3.2)

The steady-state reliability of the system given by

	
*

>0 >0 0 0= ( ) = ( )lim lims tR sR s R t− − ∞ 	 (3.3) 

4. Availability Analysis

Let Ai(t) be the probability that the system is in upstate at instant t 
given that the system entered regenerative state i at t=0. The recursive 
relations for Ai(t) are given by:

0 0 1 1( ) = ( ) ( ) ( )A t E t f t A t+ 

1 1 2 2 3 3( ) = ( ) ( ) ( ) ( ) ( )A t E t E t A t E t A t+  + 

2 0( ) = ( ) ( )A t g t A t

3 0( ) = ( ) ( )A t h t A t 		  (4.1) 

By taking Laplace transforms of the above equations and solving 

for *
0 ( )A s , we get:

	

* 1
0

( )( ) =
( )

N sA s
D s 		

(4.2)  

where:

	
* * *

1 0 1 1( ) = ( ) ( ) ( )N s E s f s E s+  

	
* * * * *

1 3 2( ) = 1 ( )[ ( ) ( ) ( ) ( )]D s f s h s E s g s E s− +   

The steady-state availability of the system given by:  

	
*

>0 >0 0 0= ( ) = ( )lim lims tA sA s A t− − ∞ 	 (4.3) 

5. Busy Period of the Server due to Repair

Let ( )R
iB t  is defined as the probability that the system is busy due 

to repair at epoch t starting from state iS E∈ .we have the following 
recursive relation: 

		  0 1 1( ) = ( ) ( )R RB t f t B t

Table 1.

From  0S  1S   2S   3S  

0S  -  1( )F t   ( )F t   - 

1S  -  -  2( )F t   ( )Z t  

2S   ( )G t   -  -  - 

3S  ( )H t   -  -  -
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1 2 2 3 3( ) = ( ) ( ) ( ) ( )R R RB t E t B t E t B t +    

2 0( ) = ( ) ( ) ( )R RB t G t g t B t+   

3 0( ) = ( ) ( )R RB t h t B t  	 (5.1) 

By taking Laplace transforms of the above equations and solving 

for *
0 ( )RB s , we get: 

	 * 2
0

( )( ) =
( )

R N sB s
D s 		

(5.2)

where: 	 * * *
2 1 2( ) = ( ) ( ) ( )N s G s f s E s  

	
* * * * *

1 3 2( ) = 1 ( )[ ( ) ( ) ( ) ( )]D s f s h s E s g s E s− +  

The steady-state of the busy period due to server is given by:  

	
*

00 0 0= ( ) = ( )lim limR R R
s tB sB s B t→ →∞ 	 (5.3) 

6. Busy Period of the Server due to Preventive Mainte-
nance

Let ( )P
iB t  is defined as the probability that the system is busy due 

to Preventive Maintenance at epoch t starting from state iS E∈ .we 
have the following recursive relation:

0 1 1( ) = ( ) ( )P PB t f t B t

1 2 2 3 3( ) = ( ) ( ) ( ) ( )P P P PB t E t B t E t B t + 

2 0( ) = ( ) ( )P PB t g t B t   

3 0( ) = ( ) ( ) ( )P PB t H t h t B t+  		  (6.1)

By taking Laplace transforms of the above equations and solving 

for *
0 ( )PB s , we get 

* 3
0

( )( ) =
( )

P N sB s
D s

		  (6.2)

where:

	
* * *

3 1 3( ) = ( ) ( ) ( )N s H s f s E s   

	
* * * * *

1 3 2( ) = 1 ( )[ ( ) ( ) ( ) ( )]D s f s h s E s g s E s− +  

The steady-state of the busy period due to preventive maintenance 
server is given by:

	
*

00 0 0= ( ) = ( )lim limP P P
s tB sB s B t→ →∞ 	 (6.3)

7. Expected Number of Visits by the Server

Let Ni(t) be the expected number of visits by the server in (0,t] 
given that the system entered the regenerative state i at t=0. We have 
the following recursive relations for Ni(t) :

0 1 1( ) = ( ) ( )N t f t N t   

1 2 2 3 3( ) = ( ) [1 ( )] ( ) [1 ( )]N t E t N t E t N t + +  + 	

2 0( ) = ( ) ( )N t g t N t   

3 0( ) = ( ) ( )N t h t N t  		  (7.1)

By taking Laplace transforms of the above equations and solving for 
*
0 ( )N s , we get:

	 * 4
0

( )( ) =
( )

N sN s
D s 	 (7.2)

where:

	
* * *

4 1 2 3( ) = ( )[ ( ) ( )]N s f s E s E s+

	
* * * * *

1 3 2( ) = 1 ( )[ ( ) ( ) ( ) ( )]D s f s h s E s g s E s− +

The steady-state of the busy period due o server is given by:

	
*

00 0 0= ( ) = ( )lim lims tN sN s N t→ →∞ 	 (7.3)

8. Profit Analysis

Any manufacturing industry is basically a profit making organi-
zation and no organization can survive for long without minimum fi-
nancial returns for its investment. There must be an optimal balance 
between the reliability aspect of a product and its cost. The major 
factors contributing to the total cost are availability, busy period of 
server and expected number of visits by the server. The cost of these 
individual items varies with reliability or mean time to system failure. 
In order to increase the reliability of the products, we would require 
a correspondingly high investment in the research and development 
activities. The production cost also would increase with the require-
ment of greater reliability.

The revenue and cost function lead to the profit function of a firm, 
as the profit is excess of revenue over the cost of production. The 
profit function in time t is given by:

	 P(t) = Expected revenue in (0, t] – Expected total cost in (0, t]

In general, the optimal policies can more easily be derived for an in-
finite time span or compared to a finite time span. The profit per unit 
time, in infinite time span is expressed as

	 t
)t(Plim

t ∞→
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i.e. profit per unit time = total revenue per unit time – total cost per 
unit time. Considering the various costs, the profit equation is given 
as:

	 1 0 2 0 3 0 4 0= R PP K A K B K B K N− − −

where:	 K1 = Revenue per unit up-time of the system,
	 K2 = Cost per unit time for which server is busy in 	

		  repair, 
	 K3 = Cost per unit time for which server is busy in 	

		  preventive maintenance
	 K4 = Cost per unit visit by the server.

9. Numerical Results

In this section,some of the results obtained for the above system 
are illustrated with a numerical example,we assume that 

f t e t( ) = λ λ−
    f t e t

1 1
1( ) = λ λ−

   f t e t
2 2

2( ) = λ λ−

g t e t( ) =θ θ−
  h t e t( ) = β β−

  z t e t( ) =α α−

From equation (3.2), the time-dependent reliability is given by:

	 R t s s s e
si

i i i
sit

j i j
0
*

=1
3 2 1 1 2

=1,
3( ) = [ ( ) (2 )]

(
∑

∏
+ + + + + + +

≠

α λ λ α λ λ λ

ii js− )

where ( = 1 3)is i to  are the roots of the given equation.	  

  
s s s3 2

1 2 2 1 1 2 1 1
2

1 1 2

( 2 ) ( 2 2 )+ + + + + + + + + + +

+ +

α λ λ λ λα λλ λα λ λ λλ λ

λλα λλ λ ++ +λ α λ λ1
2

1
2

2 = 0

Hence the mean time to failure of the system is calculated using the 

relation MTSF= R0
* 1 2 1

2 1 1 2
(0) = ( )α λ λ λ

λα λλ λα λ λ
+ + +

+ + +

Now from equation (4.2) the time-dependent availability of the 
system is given by:

A t s s s s
i

i i i i
0
*

=1
5

2
2 1 1 1

2
1 2 1

2
( ) = [( ( 2 ) )(∑ + + + + + + + + +α λ λ αλ λ λ λ λλ β θ ss e

s s
i

sit

j j i i j

+

−≠∏
θβ )]

( )=1,
5

  

where ( = 1 5)is i to  are the roots of the equation 	  

In case steady-state availability of the system given by

A0
1 1

2
1 2 1

2 1 1 1 2 1
2

1
2

2
= ( )

( ) (
θβ αλ λ λ λ λλ

βθ αλ λλ λλ αλ λ λ λ βλ λ
+ + +

+ + + + + + ++ + +αθλ βλλ λ αθλλ1
2

1 2 1)   

From equation (5.2) the time-dependent busy period analysis due to 
server is given by:

	

B t s s e
s

R
i

i i
sit

j i j i
0

*
=1

6 1 2
2

2 2

=1,

6( ) = [ ( ( ) )]
(

∑
∏

+ + + + +

≠

λ λ α λ β βα βλ

−− s j )

where ( = 1 6)is i to  are the roots of the equation

In case, Steady-state Busy period analysis due to server is given by 

	
BR

0
1 1 2

2 1 2 1 1
=

( )
βαλ βλ λ

α αβθ βθλ βλ λ αθλ βθλ
+

+ + + +

From equation (6.2) the time-dependent busy period due to pre-
ventive maintenance of the system is given by:

	

B t s s e
s

P
i

i i
sit

j j i i
0

*
=1

6 1
2

2 2

=1,
6( ) = [ ( ( ) )]

(
∑

∏
+ + + + +

−≠

αλ θ α λ αθ θλ

ss j )

where ( = 1 6)is i to  are the roots of the equation

Steady-state busy period analysis due to preventive maintenance is 
given by

	
BP

0
1 1 2

2 2 1 2 1 1
=

( )
θαλ θλ λ

λ αβθ βθλ βλ λ αθλ βθλ
+

+ + + +

The time-dependent expected number of visits can be calculated 
from the equation (7.2) as

	 N t s s s e
i

i i i
sit

j j i
0
*

=1
6 1 2 2

=1,
6( ) = { ( )[( )( )( )]}∑

∏
+ + + + +

≠

λ λ α θ β α λ

(( )s si j−  

where ( = 1 6)is i to  are the roots of the equation
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The steady-state expected no of visit is given by:

	
N0

1 2
2

2 2 1 2 1 1
= ( )

( )
θβλ α λ

αλ αβθ βθλ βλ λ αθλ βθλ
+

+ + + +

10. Conclusion

The tabular behaviour of mean time to system failure (MTSF) 
with respect to maximum rate of operation time (α) is shown in ta-
ble 2. It is observed that MTSF decrease with the increase of α. And, 

there is a further decline in their values when direct failure rate (λ) 
and partial failure rate (λ1) increase. Tables 3 and 4 reflect respec-
tively availability and profit of the system model decrease with the 
increase of maximum rate of operation (α), direct failure rate(λ) and 
partial failure rate (λ1) for fixed values of other parameters. However, 
there is a substantial positive change in their values when repair rate 
(Θ) and preventive maintenance rate (β) increase. On the basis of the 
results obtained for a particular case it is analyzed that a system which 
undergoes preventive maintenance after a maximum operation time 
at partial failure stage can be made more profitable by increasing the 
repair rate of the system at its complete failure. 
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Table 2.

α Mean Time to System Failure( MTSF)

λ=.13,λ1=.17,
λ2=.21,θ=2.1,

β=2.7

λ=.16,λ1=.17,
λ2=.21,θ=2.1,

β=2.7

λ=.13,λ1=.20,
λ2=.21,θ=2.1,

β=2.7

5
10
15
20
25
30
35
40
45
50

3.550864
3.444336
3.407846
3.389411
3.378289
3.370849
3.365521
3.361519
3.358402
3.355905

3.228058
3.131214
3.098042
3.081283
3.071172
3.064408
3.059565
3.055926
3.053092
3.050823

3.262956
3.149022
3.109995
3.090279
3.078384
3.070426
3.064729
3.060448
3.057114
3.054444
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Table 3.

α Availability

λ=.13,λ1=.17,
λ2=.21,θ=2.1,

β=2.7

λ=.16,λ1=.17,
λ2=.21,θ=2.1,

β=2.7

λ=.13,λ1=.20,
λ2=.21,θ=2.1,

β=2.7

λ=.13,λ1=.17,
λ2=.21,θ=2.6,

β=2.7

λ=.13,λ1=.17,
λ2=.21,θ=2.1,

β=3.7

5
10
15
20
25
30
35
40
45
50

0.891564
0.890324
0.889891
0.889671
0.889537
0.889448
0.889383
0.889335
0.889297
0.889267

0.880701
0.879323
0.878842
0.878597
0.878449
0.878349
0.878278
0.878224
0.878183
0.878149

0.883569
0.881995
0.881444
0.881163
0.880992
0.880878
0.880796
0.880735
0.880687
0.880648

0.901317
0.899959
0.899485
0.899244
0.899098

0.899
0.898929
0.898876
0.898835
0.898802

0.904315
0.903512
0.903231
0.903088
0.903001
0.902943
0.902902

0.90287
0.902846
0.902826

 

Table. 4

α Profit

λ=.13,λ1=.17,
λ2=.21,θ=2.1,

β=2.7,K1=5000,
K2=150,K3=75,

K4=50

λ=.16,λ1=.17,
λ2=.21,θ=2.1,

β=2.7,K1=5000,
K2=150,K3=75,

K4=50

λ=.13,λ1=.20,
λ2=.21,θ=2.1,

β=2.7,K1=5000,
K2=150,K3=75,

K4=50

λ=.13,λ1=.17,
λ2=.21,θ=2.6,

β=2.7,K1=5000,
K2=150,K3=75,

K4=50

λ=.13,λ1=.17,
λ2=.21,θ=2.1,

β=3.7,K1=5000,
K2=150,K3=75,

K4=50

5
10
15
20
25
30
35
40
45
50

4432.517
4426.083
4423.836
4422.693

4422
4421.536
4421.202
4420.952
4420.756

4420.6

4375.405
4368.243
4365.743
4364.471

4363.7
4363.184
4362.813
4362.534
4362.317
4362.142

4390.878
4382.708
4379.847
4378.389
4377.505
4376.912
4376.486
4376.166
4375.917
4375.717

4482.644
4475.604
4473.147
4471.896
4471.138

4470.63
4470.266
4469.992
4469.778
4469.607

4496.983
4492.754
4491.276
4490.524
4490.068
4489.763
4489.543
4489.378

4489.25
4489.147
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