PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Computational Characterization of a Potential Energetic Compound: 1,3,5,7-Tetranitro-2,4,6,8-tetraazacubane

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The high densities and (strain-induced) enthalpies of formation of cage-type molecules have drawn attention to their polynitro derivatives as potential energetic materials. Several such compounds have been synthesized, including octanitrocubane and hexanitrohexaazaisowurtzitane. One that has not yet been prepared but has evoked continuing interest is 1,3,5,7-tetranitro-2,4,6,8- tetraazacubane. Some years ago, on the basis of a very high estimated density (about 2.19 g/cm3), it was predicted to have detonation properties greatly superior to those of HMX. We have now used computational procedures developed since that time to reassess the expected detonation performance of this compound. We find: density, 1.940 g/cm3; solid phase enthalpy of formation at 298 K, 757 cal/g; detonation velocity, 9.8 mm/µs; detonation pressure, 444 kbar; impact sensitivity, h50 ∼ 40 cm. These are all better than the corresponding values for HMX, but not by as much as had been estimated earlier.
Rocznik
Strony
39--52
Opis fizyczny
Bibliogr. 53 poz.
Twórcy
autor
autor
autor
  • CleveTheoComp, 1951 W. 26th Street, Cleveland, OH 44113,USA Department of Chemistry, University of New Orleans, New Orleans, LA 70148, USA, ppolitze@uno.edu
Bibliografia
  • [1] Iyer S., Slagg N., Molecular Aspects in Energetic Materials, in: Structure and Reactivity, (Liebman J.F., Greenberg A., Eds.), VCH Publishers, New York, 1988, ch. 7.
  • [2] Dlott D.D., Fast Molecular Processes in Energetic Materials, in: Energetic Materials. Part 2. Detonation, Combustion. (Politzer P., Murray J.S, Eds.), Elsevier, Amsterdam 2003, ch. 6, 125-191.
  • [3] Meyer R., Köhler J., Homburg A. Explosives, 6th ed., Wiley-VCH, Weinheim 2007.
  • [4] Kamlet M.J., Jacobs S.J., Chemistry of Detonation. I. A Simple Method for Calculating Detonation Properties of C,H,N,O Explosives, J. Chem. Phys., 1968, 48, 23-35.
  • [5] Mader C.L., Detonation Performance, in: Organic Energetic Compounds, (Marinkas P.L., Ed.), Nova Science Publishers, Commack, NY, 1996, ch. 3, 193-249.
  • [6] Mader C.L., Numerical Modeling of Explosives and Propellants, 2nd ed., CRC Press, Boca Raton, FL, 1998.
  • [7] Nielsen, A.T., Polycyclic Amine Chemistry, in: Chemistry of Energetic Materials, (Olah G.A., and Squire D.R., Eds.), Academic Press, San Diego, CA, 1991, ch. 5, 95-124.
  • [8] Alster J., Iyer S., Sandus O., Molecular Architecture versus Chemistry and Physics of Energetic Materials, in: Chemistry and Physics of Energetic Materials, (Bulusu S.N., Ed.), Kluwer, Dordrecht, The Netherlands, 1990, ch. 28, 641-652.
  • [9] Sikder A.K., Sikder, N., A Review of Advanced High Performance, Insensitive and Thermally Stable Energetic Materials Emerging for Military and Space Applications, J. Hazard. Mater., 2004, A112, 1-15.
  • [10] Eaton P.E., Zhang M.-X., Gilardi R., Gelber N., Iyer S., Surapaneni R., Octanitrocubane: A New Nitrocarbon, Propellants, Explos., Pyrotech., 2002, 27, 1-6.
  • [11] Nielsen A.T., Chafin A.P., Christian S.L., Moore D.W., Nadler M.P., Nissan R.A., Vanderah D.J., Gilardi R.D., George C.F., Flippen-Anderson J.L., Synthesis of Polyazapolycyclic Caged Polynitramines, Tetrahedron, 1998, 54, 11793-11812.
  • [12] Rice B.M., Hare, J.J., Byrd E.F.C, Accurate Predictions of Crystal Densities Using Quantum Chemical Molecular Volumes, J. Phys. Chem. A, 2007, 111, 10874-10879.
  • [13] Simpson R.L., Urtiew P.A., Ornellas D.L., Moody, G.L., Scribner K.J., Hoffman D.M., CL-20 Performance Exceeds that of HMX and its Sensitivity is Moderate, Propellants, Explos., Pyrotech., 1997, 22, 249-255.
  • [14] Engelke R., Stine J.R., Is N8 Cubane Stable?, J. Phys. Chem., 1990, 94, 5689-5694.
  • [15] Murray J.S., Seminario J.M., Politzer P., Effects of the Simultaneous Presence of Nitro and Amine Substituens in Cubane and Some Azacubanes, Struct. Chem., 1991, 2, 153-166.
  • [16] Engelke R., Calculated Properties of the Twenty-Two Carbon/Nitrogn Cubanoids, J. Org. Chem., 1992, 57, 4841-4846.
  • [17] Politzer P., Murray, J.S., Computational Studies of Energetic Organic Molecules, in: Organic Energetic Compounds, (Marinkas P.L, Ed.), Nova Science Publishers, Commack, NY, 1996, ch. 1, 1-46.
  • [18] Politzer P., Lane P., Wiener J.J.M., Cyclooligomerizations as Possible Routes to Cubane-like Systems, in: Carbocyclic and Heterocyclic Cage Compounds and Their Building Blocks, (Laali K.K., Ed.), JAI Press, Stamford, CT, 1999, 73-86.
  • [19] Sikder A.K., Maddala G., Agrawal J.P., Singh H., Important Aspects of Behavior of Organic Energetic Compounds: A Review, J. Hazard. Mater., 2001, A84, 1-26.
  • [20] Politzer P., Murray J.S., Seminario J.M., Lane P., Grice M.E., Concha M.C., Computational Characterization of Energetic Materials, J. Mol. Struct. (Theochem), 2001, 573, 1-10.
  • [21] Murray J.S., Seminario J.M., Lane P., Politzer P., Anomalous Energy Effects Associated with the Presence of Aza Nitrogens and Nitro Substituents in Some Strained Systems, J. Mol. Struct. (Theochem), 1990, 207, 193-200.
  • [22] Alkorta I., Elguero J., Rozas I., Balaban A.T., Theoretical Studies of Aza Analogues of Platonic Hydrocarbons: Part 1. Cubane and its Aza Derivatives, J. Mol. Struct. (Theochem), 1990, 206, 67-75.
  • [23] Murray J.S., Concha M.C., Seminario J.M., Politzer P., A Computational Study of Relative Bond Strengths and Stabilities of a Series of Amine and Nitro Derivatives of Triprismane and Some Azatriprismanes, J. Phys. Chem., 1991, 95, 1601-1605.
  • [24] Qiu L., Xiao H., Gong X., Ju X., Zhu W., Crystal Density Predictions for Nitramines Based on Quantum Chemistry, J. Hazard. Mater., 2007, 141, 280-288.
  • [25] Bader R.F.W., Carroll M.T., Cheeseman J.R., Chang C., Properties of Atoms In Molecules: Atomic Volumes, J. Am. Chem. Soc., 1987, 109, 7968-7979.
  • [26] Politzer P., Martinez J., Murray J.S., Concha M.C., Toro-Labbé A., An Electrostatic Interaction Correction for Improved Crystal Density Predictions, Mol. Phys., 2009, 107, 2095-2101.
  • [27] Stewart R.F., On the Mapping of Electrostatic Potentials from Bragg Diffraction Data, Chem. Phys. Lett., 1979, 65, 335-342.
  • [28] Politzer P., Truhlar D.G., Eds., Chemical Applications of Atomic and Molecular Electrostatic Potentials, Plenum Press, New York, 1981.
  • [29] Politzer P., Murray J.S., Statistical Analysis of the Molecular Surface Electrostatic Potential: An Approach to Describing Noncovalent Interactions in Condensed Phases, J. Mol. Struct. (Theochem), 1998, 425, 107-114.
  • [30] Bulat F.A., Toro-Labbé A., Brinck T., Murray J.S., Politzer, P., Quantitative Analysis of Molecular Surfaces: Areas, Volumes, Electrostatic Potentials and Average Local Ionization Energies, J. Mol. Model., 2010, 16, 1679-1691.
  • [31] Hintze J., NCSS, Kaysville, UT. http://www.ncss.com
  • [32] Eckhardt C.J., Gavezzotti A., Computer Simulations and Analysis of Structural and Energetic Features of Some Crystalline Energetic Materials, J. Phys. Chem. B, 2007, 111, 3430-3437.
  • [33] Murray J.S., Politzer P., unpublished results.
  • [34] Rice B.M., Pai S.V., Hare J., Predicting Heats of Formation of Energetic Materials Using Quantum Chemical Calculations, Combust. Flame, 1999, 118, 445-458.
  • [35] Politzer P., Lane P., Concha M.C., Computational Approaches to Heats of Formation, in: Energetic Materials. Part 1. Decomposition, Crystal and Molecular Properties, (Politzer P., Murray J.S., Eds.), Elsevier, Amsterdam, 2003, ch. 9.
  • [36] Habibollahzadeh D., Grice M.E., Concha M.C., Murray J.S., Politzer P., Nonlocal Density Functional Calculation of Gas Phase Heats of Formation, J. Comput. Chem., 1995, 16, 654-658.
  • [37] Byrd E.F.C., Rice B.M., Improved Prediction of Heats of Formation of Energetic Materials Using Quantum Mechanical Calculations, J. Phys. Chem. A, 2006, 110, 1005-1013.
  • [38] Politzer P., Murray J.S., Grice M.E., DeSalvo M., Miller E., Calculation of Heats of Sublimation and Solid Phase Heats of Formation, Mol. Phys., 1997, 91, 923-928.
  • [39] Lias S.G., Bartmess J.E., Liebman J.F., Holmes J.L., Levin R.D., Mallard W.G., Title, J. Phys. Chem. Ref. Data, 1998, 17, Suppl. 1., S1-S19.
  • [40] Brill T.B., James K., Kinetics and Mechanisms of Thermal Decomposition of Nitroaromatic Explosives, Chem. Rev., 1993, 93, 2667-2692.
  • [41] Politzer P., Murray J.S., Sensitivity Correlations, in: Energetic Materials. Part 2. Detonation, Combustion, (Politzer P., Murray J.S., Eds.), Elsevier, Amsterdam 2003, ch. 1.
  • [42] Zeman S., Sensitivities of High Energy Compounds, Struct. Bond., 2007, 125, 195-271.
  • [43] Shackelford S.A., Role of Thermochemical Decomposition in Energetic Material Initiation Sensitivity and Explosive Performance, Cent. Europ. J. Energ. Mater., 2008, 5(1), 75-101.
  • [44] Oyumi Y., Brill T.B., Thermal Decomposition of Energetic Materials. XXVIII. Predictions and Results for Nitramines of Bis-imidazolidinediones: DINGU, TNGU and TDCD, Propellants, Explos., Pyrotech., 1988, 13, 69-73.
  • [45] Kohno Y., Ueda K., Imamura A., Title, J. Phys. Chem., 1996, 100, 4701-.
  • [46] Oxley J.C., A Survey of the Thermal Stabilities of Energetic Materials, in: Energetic Materials. Part 1. Decomposition, Crystalline and Molecular Properties, (Politzer P., Murray J.S., Eds.), Elsevier, Amsterdam 2003, ch.1, 5-48.
  • [47] Murray J.S., Concha M.C., Politzer P., Links Between Surface Electrostatic Potentials of Energetic Molecules, Impact Sensitivities and C-NO2/N-NO2 Bond Dissociation Energies, Mol. Phys., 2009, 107, 89-97.
  • [48] Murray J.S., Lane P., Göbel M., Klapötke T.M., Politzer P., Reaction Force Analyses of Nitro-Aci Tautomerizations of Trinitromethane, the Elusive Trinitromethanol, Picric Acid and 2,4-Dinitro-1H-imidazole, Theor. Chem. Acc., 2009, 124, 355-363.
  • [49] Pospíšil M., Vávra P., Concha M.C., Murray J.S., Politzer P., A Possible Crystal Volume Factor in the Impact Sensitivities of Some Energetic Compounds, J. Mol. Model., 2010, 16, 895-901.
  • [50] Storm C.B., Stine J.R., Kramer J.F., Sensitivity Relationships in Energetic Materials, in: Chemistry and Physics of Energetic Materials, (Bulusu S.N., Ed.), Kluwer, Dordrecht, The Netherlands 1990, ch. 27.
  • [51] Pelosi L.F., Miller W.T., Syntheses from Perfluoro-2-butyne. 2. Perfluorooctamethylcubane, Perfluorooctamethylcuneane, and Perfluorooctamethylcyclooctatetraene, J. Am. Chem. Soc., 1976, 98, 4311-4312.
  • [52] Wettling T., Schneider J., Wagner O., Kreiter C.G., Regitz M., Tetra-tert-butyltetraphosphacubane: The First Thermal Cyclooligomerization of a Phosphaalkyne, Angew. Chem. Int. Ed. Engl., 1989, 28, 1013-1014.
  • [53] Politzer P., Murray J.S., Grice M.E., Sjoberg P., Computer-Aided Design of Monopropellants, in: Chemistry of Energetic Materials, (Olah G.A., Squire D.R., Eds.), Academic Press, San Diego, CA, 1991, ch. 4.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT6-0014-0016
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.