PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Applicability of Non-isothermal DSC and Ozawa Method for Studying Kinetics of Double Base Propellant Decomposition

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In order to determine Arrhenius kinetic constants various experimental techniques and testing conditions have been used. Also, various kinetic approaches and data treatment procedures have been applied, resulting sometimes in considerable disagreement in the values of the kinetic parameters reported in literature. Kinetics of decomposition of DB propellants from non-isothermal DSC experiments using unhermetically closed sample pans, and effect of nitroglycerine (NG) evaporation on the kinetic results and kinetics of NG evaporation has been studied by isothermal thermogravimetry. It has been shown by experiments and numerical simulation that at slower heating rates and smaller sample mass NG may completely evaporate before DSC peak maximum, resulting in a higher values of the activation energy (173 kJ/mol). At faster heating rates and larger sample masses certain amount of NG still exists in the propellant at the peak maximum temperature, resulting in lower values of the activation energy (142 kJ/mol). The discontinuity point on the Ozawa plot is connected with the presence of NG in the propellant at DSC peak maximum temperature. This implies that the activation energy obtained using small samples and slow heating rates (173 kJ/mol) corresponds to the activation energy of decomposition of nitrocellulose from DB propellant.
Rocznik
Strony
233--251
Opis fizyczny
Bibliogr. 27 poz.
Twórcy
autor
  • Brodarski Institute - Marine Research & Advanced Technologies, Av. V. Holjevca 20, 10020 Zagreb, Croatia, smatecic@hrbi.hr
Bibliografia
  • [1] McCarty J., Introduction to Differential Scanning Calorimetry (effects of selfheating on kinetics), TLN Systems Inc., Phoenix, Arizona, USA, UR L: http://www.TechLearningNow.com, 2002.
  • [2] Bohn M.A., Kinetic Modelling of the Ageing of Gun and Rocket Propellants for the Improved and time-Extended Prediction of Their Service Lifetime, Proc. 1998 Life Cycles of Energetic Materials, Fullerton, California, USA, 1998, pp. 1-38.
  • [3] Vyazovkin S., Wight W., Isothermal and Non-isothermal Kinetics of Thermally Stimulated Reactions of Solids, Int. Rev. Phys. Chem., 1998, 17(3), 407-433.
  • [4] Merzhanov A.G., Abramov V.G., Thermal Explosion of Explosives and Propellants. A R eview, Propellants and Explosives, 1981, (6), 130-148.
  • [5] Isler J., Kayser D., Correlation Between Kinetic Properties and Self-Ignition of Nitrocellulose, 6th Symp. Chem. Probl. Connected Stab. Explos., Kungalav, Sweden, 1982, p. 217.
  • [6] Sućeska M., A Computer Program Based on Finite Difference Method for Studying Thermal Initiation of Explosives, J. Therm. Anal. Cal., 2002, 68, 865-875.
  • [7] T icmanis U., Pantel G., Wild R., Eich T., Wilker S., Simulation and Verification of Exothermically Reacting Systems, 33rd Int. Ann. Conf. ICT, Karlsruhe, Germany, 2002, p. 111.1.
  • [8] Sućeska M., Influence of Thermal Decomposition Kinetic Model on Results of Propellants Self-ignition Numerical Modelling, 5th Seminar New Trends in Research of Energetic Materials, Pardubice (Czech Republic), 2002, p. 308.
  • [9] McQuire R.R., Tarver C.M., Chemical Decomposition Models for Thermal Explosion of Confined HMX, RDX, and TNT Explosives, Report UCRL-84986, Lawrence Livermore Laboratory, Livermore, 1981.
  • [10] Stanković M., Kapor V., Petrović S., The Thermal Decomposition of Triple Base Propellants, 7th European Symposium on Thermal Analysis and Calorimetry, Balatonfured (Hungary), 1998, p. 196.
  • [11] Ozawa T., Kinetic Analysis of Derivative Curves in Thermal Analysis, J. Thermal Anal., 1970, (2), 301-324.
  • [12] Flynn J.H., Wall L.A., A Quick, Direct Method for the Determination of Activation Energy from Thermogravimetric Data, Polym. Lett., 1966, (4), 323-328.
  • [13] Flynn J.H., The Isoconversional Method for Determination of Energy of Activation at Constant Heating Rates, J. Thermal Anal., 1983, 27, 95-102.
  • [14] Behme R., McCarty J., Self-Heating and Determination of Kinetics Using ASTM Method E698, 21st Ann. Conf. North American Thermal Analysis Society, Albuquerque, NM, 2003.
  • [15] Vyazovkin S., Wight W., Kinetics in Solids, Annu. Rev. Phys. Chem., 1997, 48, 125-149.
  • [16] Santhosh G., Venkatachalam S., Francis A.U., Krishnan K., Catherine K.B., Ninan K.N., Thermal Decomposition Kinetic Studies on Ammonium Dinitramide (AND) - Glycidyl Azide Polymer (GAP) System, 33rd Int. Ann. Conf. ICT, Karlsruhe (Germany), 2002, p. 64.1.
  • [17] Sućeska M., Mihalić Ž., Rajić, M., Applicability of Non-isothermal Methods and Different Kinetic Approaches for Description of Thermal Decomposition of Homogeneous Propellants (in Croatian), Report. No. 9-2-250, Brodarski Institut, Zagreb, 2000.
  • [18] Doyle C.D., Estimating Isothermal Life from Thermogravimetric Data, J. Appl. Polymer Sci., 1962, (6), 639-642.
  • [19] Sućeska M., Matečić Mušanić S., Rajić M., Determination of Arrhenius Kinetic Constants for Double Base Propellant by Non-isothermal DSC Measurements. Influence of Sample Self-Heating, 6th Seminar New Trends in Research of Energetic Materials, Paradubice, Czech Republic, 2003, pp. 374-391.
  • [20] Sućeska M., Matečić Mušanić S., Rajić M., Influence of NC Propellant Sample Self-heating on Arrhenius Kinetic Constants Derived from Non-isothermal DSC Measurements, 7th Seminar New Trends in Research of Energetic Materials, Paradubice, Czech Republic, 2004, pp. 285-298.
  • [21] McCarty J., Self-Heating Errors in using ASTM Method E698 for the Determination of Reaction Kinetics, TA Hotlinks, 1984.
  • [22] Rogers R.N., Private communications, 2002.
  • [23] Sućeska M., McCarty J., Matečić Mušanić, S., Rajić, M., Influence of Testing Conditions on Results of Arrhenius Constants Determination by Non-isothermal Isoconversional Methods, “Forum Explosivstoffe 2002”, 3rd Int. Workshop “Thermoanalyse” des WIWEB, 2002, 65-87.
  • [24] Sućeska M., Matečić Mušanić S., Fiamengo Houra I., Kinetics and Enthalpy of Nitroglycerine Evaporation from Double Base Propellants by Isothermal Thermogravimetry, Thermochim. Acta, 2010, (in press).
  • [25] T ompa A.S., Thermal Analysis of Liquid and Solid Propellants, J. Hazard. Mater., 1980, (4), 95-112.
  • [26] Fiamengo Houra I., Sućeska M., Matečić Mušanić S., Application of Thermal Methods for Determination of Nitroglycerine Content in Double Based Propellants, 12th Seminar New Trends in Research of Energetic Materials, Pardubice, Czech Republic, 2009, p. 87.
  • [27] Sućeska M. – unpublished results.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT6-0014-0004
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.