PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Preparation of silver nanoparticles via chemical reduction and their antimicrobial activity

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A simple and economic method of synthesis of silver colloid nanoparticles with controlled size is presented. By reduction of [Ag(NH3)2]+ complex in sodium dodecylsulfate (SDS) micellar solution with three various reducing agents (hydrazine, formalin and ascorbic acid) the nanoparticles were produced with size below 20 nm. The average size, size distribution, morphology, and structure of particles were determined by dynamic light scattering (DLS), scanning electron microscopy (SEM), and UV/Visible absorption spectrophotometry. The influence of the reducing agent on the size of silver particles, fraction of metallic silver and their antimicrobial properties is discussed. In particular, the reduction of silver complex by hydrazine resulted in silver nanoparticles with size below 20nm. They showed high activity against Gram-positive and Gram-negative bacteria (lab isolated strains), and clinical isolated strains including highly multiresistant strains such as Staphylococcus epidermidis, Staphylococcus aureus and Pseudomonas aeruginosa.
Słowa kluczowe
Rocznik
Tom
Strony
85--98
Opis fizyczny
Bibliogr. 47 poz.
Twórcy
autor
  • Institute of Catalysis and Surface Chemistry PAS, st. Niezapomianjek 8, 30-239 Kraków, Poland, ncszczep@cyf-kr.edu.pl
Bibliografia
  • 1. ABID J.P., WARK A.W., et al. (2002). Preparation of Silver Nanoparticles in Solution From a Silver Salt By Laser Irradiation. Chem Commun 792-793.
  • 2. BAKER C. PRADHAN A., et al. (2005). Synthesis and Antibacterial Properties of Silver Nanoparticles J. Nanosci. Nanotechnol. 5: 244-249
  • 3. BOSETTI M., MASSE A., et al. (2002). Silver coated materials for external fixation devices; in vitro biocompatibility and genotoxicity. Biomaterials 23: 887–892
  • 4. BUTKUS M.A., EDLING L., et al. (2003). The efficacy of silver as a bactericidal agent: advantages, limitations and considerations for future use. J. Water Supply Res. Technol-Aqua 52: 407-416
  • 5. CATAURO M., RAUCCI M.G., et al. (2004). Antibacterial and bioactive silver-containing Na2O _CaO _ 2SiO2 glass prepared by sol-gel method. J Mater Sci Mater Med. 15(7): 831 - 837.
  • 6. CHEN S.P., WU G.Z., et al. (2005). Preparation of high antimicrobial activity thiourea chitosan-Ag+ complex. Carbohydr. Polym. 60: 33-38.
  • 7. Clinical and Laboratory Standards Institute, (2006). Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically; Wayne, PA, USA, Approved Standard M7-A7.
  • 8. COLLERA-ZUNIGA O., JIMENEZ F.G., et al. (2005). Comparative study of carotenoid composition In three mexican varieties of Capsicum annuum L. Food Chem. 90: 109–114
  • 9. CRABTREE J.H., BURCHETTE R.J., et al. (2003). The efficacy of silver-ion implanted catheters In reducing peritoneal dialysis-related infections. Perit Dial Int. 23(4): 368-374.
  • 10. GARDEA-TORRESDEY J.L., GOMEZ E., et al. (2003). Alfalfa Sprouts: A Natural Source for the Synthesis of Silver Nanoparticles. Langmuir 19: 1357-1361.
  • 11. GAUGER A., MEMPEL M., et al. (2003). Silver-Coated Textiles Reduce Staphylococcus ureus Colonization in Patients with Atopic Eczema. Dermatology 207: 15-21.
  • 12. GOSHEGER G., HARDES J., et al. (2004). Silver-coated megaendoprostheses in a rabbit model—an analysis of the infection rate and toxicological side effects. Biomaterials 25: 5547-5556.
  • 13. GUTIERREZ M., HENGLEIN A. (1993). Formation of colloidal silver by push-pull reduction of Ag+. J. Phys. Chem. 97: 11368-11370.
  • 14. JAGADEESH B.H., PRABHA T.N., et al. (2004). Activities of β-hexosaminidase and α-mannosidase during development and ripening of bell capsicum (Capsicum annuum var. variata). Plant Sci. 167: 1263–1271
  • 15. JEONG S.H., YEO S.Y., et al. (2005). The effect of filler particle size on the antibacterial properties of compounded polymer/silver fibers. J Mater Sci. 40: 5407–5411.
  • 16. KHANNA P .K., SUBBARAO V.V.V.S. (2003). Nanosized silver powder via reduction of silver nitrate by sodium formaldehydesulfoxylate in acidic pH medium. Mater. Lett. 57: 2242-2245
  • 17. LEOPOLD N., LENDL B. (2003). A New Method for Fast Preparation of Highly Surface-Enhanced Raman Scattering (SERS) Active Silver Colloids at Room Temperature by Reduction of Silver Nitrate with Hydroxylamine Hydrochloride. J. Phys. Chem. B 107: 5723-5727.
  • 18. LI S., SHEN Y., et al. (2007). Green synthesis of silver nanoparticles using Capsicum annuum L. extract. Green Chem 9: 852-858.
  • 19. LIM D.C., LOPEZ-SALIDO I., et al. (2006). Characterization of Ag nanoparticles on Si wafer prepared using Tollen's reagent and acid-etching. Apel. Surf. Sci. 253: 959–965
  • 20. MAJID A., BENSEBAA F., et al. (2003). Modification of the metallic surface of silver by the formation of alkanethiol self-assembled monolayers with subsequent reaction with chlorosilanes. Rev. Adv. Mater. Sci. 4: 25-31.
  • 21. MATIJEVIC, (1993). Preparation and properties of uniform size colloids. E. Chem. Mater. 5: 412-426.
  • 22. MIRKIN CA, TATON TA. (2000). Semiconductors meet biology. Nature 405: 626-627.
  • 23. MORONES J.R., ELECHIGUERRA J.L., et al. (2005). The bactericidal effect of silver anoparticles. J. Nanotechnology 16: 2346-2353
  • 24. MOULDER J.F., STICKLE W.F., et al. (1992). in Handbook of X-ray Photoelectron Spectroscopy (ed. J. Chastain, 2nd edition) Perkin-Elmer Corporation (Physical Electronics),
  • 25. NICKEL U., CASTELL A.Z., et al. (2000). A silver colloid produced by reduction with hydrazine as support for highly sensitive surface-enhanced raman spectroscopy. Langmuir, 16: 9087-9091.
  • 26. OHASHI S., SAKU S., et al. (2004). Antibacterial activity of silver inorganic agent YDA filler. J. Oral Rehabil. 31: 364-367.
  • 27. PARIKH D.V., FINK T., et al. (2005). Antimicrobial Silver/sodium Carboxymethyl Cotton Dressings for Burn Wounds Text. Res. J. 75: 134-138.
  • 28. RAVEENDRAN P, FU JET, et al. (2003). Totally green nanoparticle synthesis. J Am Chem Soc 125: 13940-13941.
  • 29. RICHARDSON A., JANIEC A., et al. (2006). Synthesis of silver nanoparticles: An undergraduate laboratory using a green approach. Chem Ed 11: 331-333.
  • 30. RUPP M.E., FITZGERALD T., et al. (2004). Effect of silver-coated urinary catheters: efficacy, costeffectiveness, and antimicrobial resistance. Am. J. Infect. Control 32: 445-450.
  • 31. SAITO Y., WANG J., et al. (2003). Simple Chemical Method for Forming Silver Surfaces with Controlled Grain Sizes for Surface Plasmon Experiments. Langmuir 19: 6857-6861.
  • 32. SCHNEIDER S., HALBIG P., et al. (1994). Reproducible preparation of silver sols with uniform particle size for application in sur-face-enhanced Raman spectroscopy Photochem. Photobiol. 60: 605-610.
  • 33. SHANKAR S.S., AHMAD A., et al. (2002). Geranium leaf assisted biosynthesis of silver nanoparticles. Biotechnol Prog 19: 1627-1631.
  • 34. SHANKAR S.S., AHMAD A., et al. (2005). Controlling the Optical Properties of Lemongrass Extract Synthesized Gold Nanotriangles and Potential Application in Infrared-Absorbing Optical Coatings. Chem Mater 17: 566-572.
  • 35. SHARMA V.K., YNGARD R.A., et al. (2009). Silver nanoparticles: Green synthesis and their antimicrobial activities. Advances in Colloid and Interface Science 145: 83–96
  • 36. SHIN H.S., CHOI H.C., et al. (2004). Chemical and size effects of nanocomposites of silver and polyvinyl pyrrolidone determined by X-ray photoemission spectroscopy. Chem. Phys. Lett. 383: 418–422
  • 37. SILVER S, PHUNG LT., (1996). Bacterial heavy metal resistance: new surprises. Annu Rev Microbiol. 50: 753-789.
  • 38. SONDI I., GOIA D.V., et al. (2003). Preparation of highly concentrated stable dispersions of uniform silver nanoparticles. J. Colloid Interface Sci. 260: 75-81.
  • 39. SONDI I., SALOPEK-SONDI B. (2004). Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative. J. Colloid Interface Sci. 275: 177-182.
  • 40. STRATHMANN M., WINGENDER J. (2004). Use of an oxonol dye in combination with confocal laser scanning microscopy to monitor damage of Staphylococcus aureus cells during colonization of silver-coated vascular grafts. International Journal of Antimicrobial Agents 24: 36-42
  • 41. SUN R.W.Y., CHEN R., et al. (2005). Silver nanoparticles fabricated in Hepes buffer exhibit cytoprotective activities toward HTV-1 infected cells. Chem. Commun. 40: 5059-5061.
  • 42. ULKUR E., ONCUL O., et al., (2005). Comparison of silver-coated dressing (Acticoat), chlorhexidine acetate 0.5% (Bactigras), and fusidic acid 2% (Fucidin) for topical antibacterial effect In methicillin-resistant Staphylococci-contaminated, full-skin thickness rat burn wounds. Burns 31: 874-877
  • 43. VIGNESHWARAN N., KATHE A.A., et al. (2007). Silver-protein (core-shell) nanoparticle production using spent mushroom substrate. Langmuir 23: 7113-7117.
  • 44. WU Q., CAO H., et al. (2008). Biomolecule-Assisted Synthesis of Water-Soluble Silver Nanoparticles and Their Biomedical Applications. Inorg Chem 47: 5882-5888.
  • 45. XIE J., LEE J.Y., et al. (2007). Silver Nanoplates: From Biological to Biomimetic Synthesis. ACSNano 1: 429-439.
  • 46. YIN Y.D., LI Z., et al. (2002). Synthesis and characterization of stable aqueous dispersions of silver nanoparticles through the Tollens process.s J. Mater. Chem. 12: 522-527.
  • 47. YURANOVA T., RINCON A., et al. (2003). Antibacterial textiles prepared by RF-plasma and vacuum- UV mediated deposition of silver. J Photochem. Photobiol. A. Chem., 161: 27-34.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT6-0013-0032
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.