PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of titania coating as photoactive refill in the reactor for purification of water contaminated with organics

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of the present work was to remove organic impurities from water using a reactor with photoactive refill. Application of the photoactive refill solves the problem of the replacement of the reactor or its parts when the photocatalyst activity decreases. In case of photocatalytic activity drop, only the photoactive refill can easily be replaced. Titanium dioxide coating was immobilized on the glass fabric as a thin layer from the alcoholic suspension followed by thermal stabilization. The results of studies revealed that the titania coating shows a high photocatalytic potential for the decomposition of the model organic compounds (azodye Acid Red 18, phenol and methylene blue) in water. The coating exhibits high stability in repeated cycles of water treatment.
Rocznik
Tom
Strony
39--47
Opis fizyczny
Bibliogr. 24 poz.
Twórcy
  • Institute of Chemical and Environment Engineering, West Pomeranian University of Technology in Szczecin, Pułaskiego 10, 70-322 Szczecin, Poland,, joanna.grzechulska@zut.edu.pl
Bibliografia
  • [1] Handbook: Advanced photochemical oxidation processes. (1998). United States Environmental Protection Agency, EPAl6251R-981004
  • [2] FUJISHIMA A., RAO T. N., TRYK D. Titanium dioxide photocatalysis. J. Photochem. Photobiol. C: Photochem. Rev. 1(1), 1 – 21.
  • [3] MUNTER R. (2001). Advanced oxidation processes – current status and prospects. Proc. Estonian Acad. Sci. Chem. 50(2), 59 – 80.
  • [4] ESPLUGAS S., GIMENEZ J., CONTRERAS S., PASCUAL E., RODRIGUEZ M. (2002). Comparison of different advanced oxidation processes for phenol degradation. Water Res. 36(4), 1034 – 1042.
  • [5] GOGATE P. R., PANDIT A. B. (2004). A review of imperative technologies for wastewater treatment I: oxidation technologies at ambient conditions. Adv. Environ. Res. 8(3-4), 501 – 551; A review of imperative technologies for wastewater treatment II: hybrid methods. Adv. Environ. Res. 8(3-4), 553 – 597.
  • [6] HASHIMOTO K., IRIE H., FUJISHIMA A. (2005). TiO2 photocatalysis: a historical overview and future prospects. Jap. J. Appl. Phys. 44(12), 8269 – 8285.
  • [7] HERRMANN J.-M., DUCHAMP C., KARKMAZ M., BUI THU HOAI, LACHHEB H., PUZENAT E., GUILLARD C. (2007). Environmental green chemistry as defined by photocatalysis. J. Hazard. Mater. 146(3), 624 – 629.
  • [8] FUJISHIMA A., ZHANG X., TRYK D. A. (2007). Heterogeneous photocatalysis: from water photolysis to applications in environmental cleanup. Int. J. Hydrogen Energ. 32(14), 2664 – 2672.
  • [9] MALDONADO M. I., PASSARINHO P. C., OLLER I., GERNJAK W., FERNANDEZ P., BLANCO J., MALATO S. (2007). Photocatalytic degradation of EU priority substances: a comparison between TiO2 and Fenton plus photo-Fenton in a solar pilot plant. J. Photoch. Photobio. A 185(2-3), 354 – 363.
  • [10] GAYA U. I., ABDULLAH A. H. (2008). Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: a review of fundamentals, progress and problems. J. Photoch. Photobio. C 9(1), 1 – 12.
  • [11] FERNÁNDEZ, A., LASSALETTA, G., JIMÉNEZ, V.M., JUSTO, A., GONZÁLEZ-ELIPE, A.R., HERRMANN, J.-M., TAHIRI, H., AIT-ICHOU, Y. (1995). Preparation and characterization of TiO2 photocatalysts supported on various rigid supports (glass, quartz and stainless steel). Comparative studies of photocatalytic activity in water purification. Appl. Catal. B: Environ. 7 (1-2), 49 – 63.
  • [12] GRZECHULSKA, J., MORAWSKI, A.W. (2003). Photocatalytic labyrinth flow reactor with immobilized P25 TiO2 bed for removal of phenol from water. Appl. Catal. B: Environ. 46(2), 415– 419.
  • [13] GELOVER S., MONDRAGÓN P., JIMÉNEZ A. (2004). Titanium dioxide solegel deposited over glass and its application as a photocatalyst for water decontamination. J. Photoch. Photobio. A 165(1-3), 241 – 246.
  • [14] PARRA S., STANCA S. E., GUASAQUILLO I., THAMPI K. R. (2004). Photocatalytic degradation of atrazine using suspended and supported TiO2. Appl. Catal. B 51(2), 107 – 116.
  • [15] MOZIA S., TOMASZEWSKA M., MORAWSKI A. W. (2005). Decomposition of nonionic surfactant in a labyrinth flow photoreactor with immobilized TiO2 bed. Appl. Catal. B 59(3-4), 155 – 160.
  • [16] GUNLAZUARDIA J., LINDU W. A. (2005). Photocatalytic degradation of pentachlorophenol In aqueous solution employing immobilized TiO2 supported on titanium metal. J. Photoch. Photobio. A 173(1), 51 – 55.
  • [17] KRYSA J., WALDNER G., MESTANKOVA H., JIRKOVSKY J., GRABNER G. (2006). Photocatalytic degradation of model organic pollutants on an immobilized particulate TiO2 layer. Roles of adsorption processes and mechanistic complexity. Appl. Catal. B 64(3-4), 290 –301.
  • [18] TRYBA B. (2008). Immobilization of TiO2 and Fe–C–TiO2 photocatalysts on the cotton material for application in a flow photocatalytic reactor for decomposition of phenol in water. J. Hazard. Mater. 151(2-3), 623 – 627.
  • [19] GOETZ V., CAMBON J. P., SACCO D., PLANTARD G. (2009). Modeling aqueous heterogeneous photocatalytic degradation of organic pollutants with immobilized TiO2. Chem. Eng. Process. 48(1), 532 – 537.
  • [20] GRZECHULSKA-DAMSZEL J., MORAWSKI A. W. (2007). Removal of organic dye in the hybrid photocatalysis/membrane processes system. Pol. J. Chem. Tech. 9(2), 104 – 108.
  • [21] GRZECHULSKA – DAMSZEL J., MORAWSKI A. W. (2009). Water purification using a novel reactor with photoactive refill. Catal. Lett. 127, 222-225.
  • [22] GRZECHULSKA – DAMSZEL J., TOMASZEWSKA M., MORAWSKI A. W. (2009). Integration of photocatalysis with membrane processes for purification of water contaminated with organic dyes. Desalination. 241, 118-126
  • [23] GRZECHULSKA – DAMSZEL J., MORAWSKI A. W. (2009). Water purification using a novel reactor with the photoactive refill. Pol. J. Chem. Tech. 11(1), 61-63.
  • [24] GRZECHULSKA – DAMSZEL J., MORAWSKI A. W. (2009). Removal of organic dyes In hybrid photocatalysis/nanofiltration system, Asia-Pac. J. Chem. Eng. Special Issue: Membrane Reactors. 4, 239-245.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT6-0013-0028
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.