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Summary: This paper presents an analytical frequency-domain method for harmonics modeling
and evaluation in power electronic systems. The considered system is described by a set of
differential equations, which are converted in the frequency domain and presented in a matrix
form. Indeed, currents and voltages are described in terms of Fourier series and arranged in a
vector form. The passive elements and the switching functions are then represented by harmonic
transfer matrices. The resolution of the matrix equations leads to theoretical time and frequency
expressions of the system voltages and currents.

This method is applied to a closed-loop three phase AC/DC/AC PWM converter. The control loop
of the converter is modeled by additional equations. The spectra of the switching functions,
necessary to build the corresponding harmonic transfer matrices, are calculated through a
double Fourier series decomposition. The matrix equations are solved and the results are
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compared to those obtained by real measurements and Matlab/Simulink simulations.

1.INTRODUCTION

The wide spread use of power electronic devices in power
networks is due to their multiple functions: compensation,
protection and interface for generators. Adapting and
transforming the electric energy, they make possible the
insertion in the power network of independent generators
and renewable sources of energy. However, because of their
switching components, power electronic converters generate
current and voltage harmonics which may cause
measurements, stability and control problems.

In order to avoid this kind of harmonic disturbances, a
good knowledge on the harmonic generation and propagation
is necessary. A better understanding of the harmonic transfer
mechanisms could make the harmonic attenuation more
efficient, optimizing filters and improving power electronic
control.

The harmonic study can be effectuated in the time domain
or in the frequency domain. In the time domain, currents and
voltages spectra are obtained by application of Fourier
transform. This domain can not give an analytical harmonic
solution for the considered system and the relations between
harmonics can not be expressed.

In the frequency domain, several methods for power
network harmonic analysis exist [1]. The simplest consists to
model the network presenting power electronic devices by
known sources of harmonic currents. Another method
presents converters by their Norton equivalent.

These two methods are the most often used in the network
harmonic analysis. They are simple, but not accurate, because
they do not take into account the dynamics of the switching
components.

More precise models designed for the power electronic
devices exist. Such a model is the transfer function model,
which links the converter state variables by matrix equations.

Another method proposed in [2] describes the converter by
a set of nonlinear equations solved by Newton’s method.
These models have a good accuracy, but because of their
complexity they can not be applied to systems containing
multiple converters.

For an accurate network harmonic analysis, a simple and
efficient method taking into account the harmonics induced
by the switching process is required.

The method proposed in this paper uses the periodicity of
the converter variables in steady state in order to put them in a
matrix form in the frequency domain. Previous researches in this
area have been already made. In [3], the models of power
electronic structures are built using harmonic transfer matrices
and are implemented in Matlab/Simulink. This method is
especially used for stability analysis and for that reason data are
simplified and high frequencies are neglected. In [4], a method
using the periodicity of the variables is presented, but it only
gives a numerical solution and it is not applied in the case of
switching circuits and network analysis. Both previous methods
do not give analytical expressions of the harmonics.

In this paper the presented method describes the
considered system by differential equations, which are then
converted in the frequency domain. Being periodic signals,
currents and voltages are described in terms of Fourier series
and then by vectors of harmonics. The passive elements and
the switching functions are described by matrices. The
resolution of the matrix equations gives time and frequency
expressions of voltages and currents.

This paper is organized as follows: Section 2 describes
the harmonic transfer via the different components of power
electronic systems. The method for harmonics assessment is
described in Section 3 and illustrated with a simple example.
In section 4 the method is applied to a closed-loop three
phase PWM AC/DC/AC converter. The obtained results are
confirmed by real measurements and simulation in Section 5.
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2. HARMONIC TRANSFER VIA PASSIVE AND
SWITCHING ELEMENTS

Power electronic systems can be considered as combination
of switching and passive components. In this section the
harmonic propagation through these elements is analysed
and the necessity of their matrix representation is
demonstrated.

When building the harmonic transfer matrices, some
assumptions are made: the switching and the passive
components are supposed ideal, the considered system is
supposed to be in steady state and periodically time-variant.

2.1. Harmonic transfer matrix throughout switching
elements

For the simple switching process presented in Figure 1,
the relation between ac and dc currents i,.(f) and i,.(¢) is
given by:

i (1) = u(®)i, (1) (1)

where i,.(?) is supposed T; — periodic (periodic with period
of T; seconds) and the switching function u(¢) is T;,— periodic
with T; = NT,,. In the following, N is an integer so that u(%)
can be also considered as T;— periodic.

Therefore, the previous signals can be decomposed in
Fourier series as a function of the same fundamental frequency

1
T, and Equation 1 finally becomes:
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Fig. 1. A simple switching process

where:

w, =2

1

and <x>.= TL I x(t)e X gy
i1

i

is the kth harmonic component of the T;— periodic signal

x(2).
Equation 2 shows that i ;(¢) can be viewed as a T; periodic
signal with the following Fourier coefficients:

< Ldc >k: 2 <u >k—n< Lac >n (3)
n=—co

By using this relation, Equation 2 can also be written in
amatrix form as follows:

<y >4 <u>y <u>_,; <u>, <y >p1
<ig >, |= <u> <u>; <u>_ <l >
<lg. >p41 <u>, <u> <u> <iy >4
©)
or with a shorter notation:
[Idc]:[U][lacJ (5)

The matrix [U] is called the “harmonic transfer matrix” of the
considered switching elements. It only depends on the Fourier
coefficients of the switching function u(¢), and follows a
Toeplitz structure, which means that its elements situated on
the same diagonal are equal.

2.2 Harmonic transfer matrix for passive elements

For passive elements, for example a capacitor, the relation
between current and voltage harmonics is given by the
formulae:

d<v>,

7 + jkoC <v>;

©)

As the system is considered in its steady state, the harmonics
do not vary with time, which implies the following
simplification:

z—Cd[ = <i> C<dt>k C

d<v>;

<V >, =const 7

=0 = <i> =jkoC<v>,
)

and the relation between the voltage and current harmonics
can be expressed in the following matrix form:
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.0 0 0 0 00
0. . 0 0 0 00
<i>p 0 0 jk-DwC 0 0 0 Off<v>,
<i> |=|0 0 0 JjkoC 0 0 0 <v>
<i>py 00 0 0  jk+DwC 0 Of<v>,
00 0 0 0 0
L 1 [0 0 0 0 0 0 . |
®)

Analogically, harmonic transfer matrices through an inductor
and a resistor can be expressed by matrix Equations 9 and 10
respectively.

.0 0 0 0 00
0. . 0 0 0 00
<v> | |0 0 jk-DwL 0 0 0 0| <i>
<v>, |=/0 O 0 JjkoL 0 0 0] <i>
<V 00 0 0 Jjk+DwL 0 0| <i>,
00 0 0 0 .0
L 1 10 0 0 0 0 0 . ]
©
i 177. 00 0 0 0 0 |
0. . 0 0 0 0O
<v>,1 |00 R 0 0 0 0f<i>_
<v> [=|/0 00 R 0 0 Of <i>
<V 00 0 0 R O 0f<i>y (10)
000 O0O0 .0
| ] ]1ooo0o o000 .| |

This shows that transfer matrices of passive elements have
a diagonal structure.

The matrix form used here to represent the transfer function
of passive components has to be used in order to describe
the whole considered system because of the presence of
switching components.

3. METHOD FOR HARMONICS EVALUATION

In this section, the method for harmonics evaluation is
presented in details and applied to a simple converter structure
in order to illustrate its properties.

3.1. Algorithm

The method is composed of the following steps [5,6]:

— The considered converter structure is described by
differential equations. The equations number depends
on the number of inductances and capacitors in the
system.

— The differential equations are converted in the frequency
domain and represented in a matrix form. Currents and
voltages are represented by vectors of harmonics,
passive elements become matrices with diagonal
structure, and the switching functions become matrices
with Toeplitz structure.
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|

Fig. 2. A simple converter structure

— The matrix equations are solved in the frequency domain,
and the frequency expression of the currents and voltages
is obtained. Their time expression can also be deduced
by Fourier series.

3.2. Example

In order to be better illustrated, the previous method is
applied to the simple converter structure described in Figure
2 and containing both passive and switching elements.

The matrix equations describing the considered system
are:

(L0 1= [C] Vae ]
[Iac ]= [U][Idcj
[L][Iac :|: [Vac ]_ % ][VdCJ

where

(11

[Cland [L] — are the capacitor and the inductor
diagonal matrices,
[U] — is the switching function matrix with

a Toeplitz structure,
[Vaeds WVaels [gel, et [1,.] are vectors containing the harmonics

of the corresponding state variables.

A problem which may occur in this case is the non

inversibility of the matrices corresponding to the inductor
and the capacitor when the dc component (harmonic of
rang 0) is taken into account. Fortunately, the inversion of
these matrices can be avoided by simple mathematical
permutations. The solution of the matrix equations avoiding
the inversion of the capacitor and inductor matrices is in this
case:

Vel = ((LI0)[C]+[U]) [V ]
ARG EIA

[Idc]: [C][Vdc:l @

It can be noted that this method directly leads to an
analytical solution of the harmonics of the different electrical
quantities. For this reason, this frequency domain method
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Fig. 3. AC/DC/AC three phase converter used as power interface

can be considered as more accurate and rapid than the time
domain one, where time waveforms of the state variables are
first obtained, and then corresponding spectra are deduced.
Another advantage of this method is that the harmonics
analytical expression can be used to increase the efficiency
in harmonics reduction and elimination.

4. APPLICATION OF THE METHOD
TO AN AC/DC/AC CONVERTER

In order to completely illustrate the previous method, the
model of a closed-loop AC/DC/AC PWM converter is
elaborated. The considered structure is chosen because of
its complexity and its wide spread use as power interface.
The considered system is composed of two converters having
the same structure (see Fig. 3), so that the application of the
method is presented only for the AC/DC converter. The
method can be analogically applied to the whole converter
structure by using similar equations for the second converter.

4.1. Modeling the AC/DC PWM converter

The method is first applied to the AC/DC converter
described in Figure 4, where the DC/AC converter of Figure
3 has been replaced by a resistor.

By supposing switching components, passive elements,
and network voltage as ideal, the converter can be described
by the set of following differential equations:

L di;l Et) = V()= Ryiy (1) = (2uy (1) = uy (£) — uy (:)) V(1)
L dii;t) =V, (1) = Ryiy (1) = (2uy (1) —uy (1) — 5 (1)) Vdc6(t)
Ly diizy) = V3 (1) = Ryt (1) = (2u(0) =1y () =1 (1)) == Viae (1) 13)
c dvfft 0 _ 2 (@i 0+ 1,000y (0 + 5 075 (1)) = dCT(r)

where u,(7) is the switching function of the ith converter leg:

_ 1
’4,‘([)— -

In steady state, these equations can be converted in the
frequency-domain and presented in the following matrix form:

(14)

[Lln]=1-[&]n]-4 (2[v,]-
[L][]=[Va ][R )1 )4 (2 (05 ][0 103 ) Ve ]
[lcsIIS]=["3]‘[R3113]‘g(2[l]3]‘ -[U:])Vae] (15)
[c][vdl]_—([u1 L]+ [Uz][12]+[U3II3])—[R]_I[Vdc]

U, )-[Us Ve ]

The state variables are represented by a set of vectors of
harmonics, and the system parameters by matrices as
described in the previous section:

[Ik]:[- o )y (L) L)y (L) (L), T k=123

g T

Vil Vae)y Vae)y Vaehy Vae)y (Vae),

[L;]1=diag GwHL,) k=123
[R,1=diag jwHR,) k=123
[Cl=diag jwHC)

[R]=diag (R)

(16)

where [H] is a vector containing the ranks of the harmonics:

[H]=]. 2 -1012...] a7

Matrices [U], [U,], and [U3] contain the Fourier
coefficients of the different switching functions:

Ve c ;-; R
\-.EJ ‘?J Ly iy
B
£+ 44 L4
S

Fig. 4. AC/DC converter
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[U,]:toeplitz[. -

[U,]= toeplitz[. .o <u2>_2 <u2 >_1 <u2>0 <u2>1 <L12>2 . }
[U;] =toeplitz[. .. <u3>72 <u3>7l <u3>0 <u3>l <u3>2 .. }
(18)

These Fourier coefficients are obtained by using Fourier
series decomposition in the case of periodic switching
function (for example full-wave converters). In the case of
PWM converters, the switching function is not exactly
periodic, but it can be represented as a two-dimensional
function of the career and the reference waveforms, which
are periodic. Therefore, the Fourier coefficients can be
obtained through a double Fourier series decomposition. For
example, the switching function of a naturally sampled PWM
is given by [7]:

u;(t) =M cos(wt +6+(i— 1)27[ %

ﬁMs

2

'{Sm([mn]%)]” (m%M)cos(m[wct+06]+n[wt+0(i—1)27nD}

(19)
where:
M — is the magnitude of the modulating signal,
w.and @ — are the carrier pulsation and phase,
wand® — are the fundamental pulsation and phase,
Jn() — is the Bessel function of order .

By supposing that the career frequency w,. is an integer
multiple of the fundamental frequency w, the Fourier
coefficients of u,(f) can be easily determined from Equation 19.

4.2. Control modeling

In open loop, the magnitude M and phase 6 of the
modulating signal used for the calculation of the Fourier
coefficients of the switching function are known and
constant. In closed loop these two parameters are used to
control the magnitudes of the converter state variables,
usually the ac current. For that reason they are not fixed, but
depend on the real and the desired (reference) values of the
controlled state variables.

In this section the impact of the control system is taken
into account by calculating the phase and magnitude of the
modulating signal. In the proposed algorithm, the converter
Equation 13 are first solved for the fundamental frequency,
and the fundamental of the switching function is found by
replacing the converter state variables by their reference
values. The modulating signal parameters are found using
the fact that the modulating signal is the fundamental of the
switching function. By knowing and the real switching
function can be calculated and the method for harmonics
estimation presented in Section 3 can be applied. The
described algorithm is given in details in this section.

The converter state variables and switching functions are
supposed symmetrical, only the fundamental component is
taken into account:

=i V=V U =u
_]27[ _]2l _]Zl
i,=ie 3 V,=Ve "3 u, =ue 3
2 2 2
(20)
.5 5 3
iy =le Va=Ve - Uy = ue

The passive elements in the three phase are considered as
equal:

{11=L2=13=Lk
1)

R =R, =R =R,

By using (20) and (21), only one phase of the converter can
be considered. Then, Equation 13 become:

dl dc
L -
car =V T
dVdc — i _ Vdc (22)
dt 2 R

The converter variables and switching function are
transformed in the dq0 frame in order to make them appear as
constant:

i=iy+ji,
V=V,+jV, (23)
u=uy+ ju,
Equations (22) transformed in the dq0 frame become:
di . . 1
L 7;’ = 0lyiy = Ridg +V =514V
di, ) 1
L, = =-wli, — R, - > u,Ve o
dvdc _ 3 . . Vdc
CT = §<udld +ugi, )—7

The magnitudes of the state variables are constant in the dq0
frame, so that their derivatives are equal to zero:

ﬂ_o di_o AV =0

dt dt dt (25)

By supposing the ac current equal to its reference value (the
PI controllers are ideal), the d and ¢ components of the
switching functions can be found.

3 pf: . . . . .
Vae = \/ B R (ldrcf/" (ka Igref = Riclarer =V ) F lgrer (“*’Lk laref ~ Riclgres ))
2 .
Ug = V. (ka aref ~ Ridarer =V ) (26)

2 . .
Uy =y - (~0 Lt = Ry )
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From the obtained values of uy and u, the fundamental
magnitude and phase of the switching function are then
calculated:

M = u5+uq

Uy
0 = —arctan| —
Uy

4.3. Application of the method to the whole converter
structure

@7

The resistor of Figure 4 is replaced by DC/AC converter.
Similar equations are used to describe the whole system. The
converter structure is connected to the grid and a resistor is
used as load. The PWM frequency is 2kHz. The obtained
results are compared with those obtained by measurements
and simulation, and are presented in the following section.

5. SIMULATION AND PRACTICAL RESULTS

The results obtained from the theoretical method, the
Matlab/Simulink simulation, and the experimental bench are
compared in this section.

Fig. 6. Experimental bench description

5.1. Theoretical method

The matrix equations describing the converter and its
control system are implemented. The switching functions
and the known state variables as the input voltage are
decomposed in Fourier series and the corresponding harmonic
transfer matrices and vectors are built. The resolution of the
matrix system equations leads to the frequency expression
of the converter state variables, and the corresponding time
waveforms can be eventually determined by inverse Fourier
transform. The calculation time depends on the number of
harmonics considered in the different signals.

5.2. Matlab/Simulink simulation

A model of the converter based on its differential equations
is implemented under Matlab/Simulink. The obtained results
are in the time domain and a Fourier transformation is used to
obtain the currents and voltages spectra.

5.3. Experimental bench

The experimental bench is presented in Figure 5 and its
structure in Figure 6. The network voltage is adapted through
autotransformers.

5.4. Results

Theoretical results are compared to those obtained by
measurements and Matlab/Simulink simulations. In Figure 7,
the spectrum of the ac current from the network side is shown
between 1500 and 6500 Hz (around PWM harmonics). In the
three cases, the harmonics are situated at the same frequencies
and have almost the same magnitudes. The small differences are
due to the assumptions used in our method, the simulation errors,
and the disturbances in the real system (non-ideal components,
noises, etc.). The results obtained for the dc voltage and the ac
current from the load side are quite similar.

6. CONCLUSION

A new analytical frequency-domain method for harmonics
modeling and evaluation in power electronic systems has
been presented in this paper. The considered system is

The spectra of the input phase current
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e e (RS S S

S 1 A S N |

i -
1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500
015 T T T T T T T T T

model

(10 S S S SO D"

10500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500
0.15 T T T T T T T T

simulation

T S A

u.';i;;;::.lil

1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500
Frequency [Hz]

measurements

Fig. 7. AC current spectrum from the network side; theoretical,
simulation, and experimental results
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described by a set of differential equations, which are
converted in the frequency domain and presented in a matrix
form. The resolution of these matrix equations leads to
theoretical expressions of the different voltages and currents.
It can be noted that this method is designed for power
systems with periodically switching components, and leads
to an analytical expression of the different electrical quantities,
which is one of its main advantages. Indeed, this allows to
determine the influence of the system parameters (control
strategy, passive elements, etc.) on the harmonic contents of
the converter state variables. It can be successfully applied
for power quality assesment, harmonic filters optimisation
and converter control design.

7. LIST OF SYMBOLS

iges I;e ~ — Alternative current
iges Ije ~ — Directcurrent
L — Inductance
M — Magnitude of the modulating signal
R — Resistor
C — Capacitor
u, U — Switching function of one leg
v — Voltage
Ve — Alternative voltage
Ve — Direct voltage
w — Fundamental pulsation
W, — Carrier pulsation
0 — Fundamental phase
0, — Carrier phase
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