PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Study of particle - bubble interaction using atomic force microscopy - current possibilities and challenges

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Badania oddziaływań cząstka-pęcherzyk za pomocą mikroskopu sił atomowych : obecne możliwości i wyzwania
Języki publikacji
EN
Abstrakty
EN
Study of interaction forces between mineral particles and air bubbles is a key to understanding flotation processes. Measurement of such interaction forces has only recently been made possible with the introduction of the atomic force microscope (AFM) and the colloidal probe technique. Using AFM, interactions between a single particle attached to the AFM cantilever and an air bubble placed on a flat hydrophobic surface are measured in an aqueous environment. Interaction forces prior to rupture of the interfacial water film as a function of the hydrophobic surface state can be established, as shown in the present study. Additionally, the effect of the hydrodynamic force between approaching air bubble and particle is quantified. Despite the great potential of the AFM colloidal probe technique for studying particle – bubble interactions, several challenges pertaining to the AFM design, experimental procedure, and data analysis have to be addressed due to deformation of the airwater interface. For example, such issues as the range of the piezoelectric translator and cantilever deflection, determination of the bubble spring constant, and identification of the point of contact between bubble and particle are now under consideration.
PL
Badania oddziaływań pomiędzy cząstkami mineralnymi i pęcherzykami powietrza są kluczowe do zrozumienia przebiegu flotacji. Wykorzystanie mikroskopii sił atomowych (AFM) i techniki próbnika koloidalnego umożliwia pomiar takich oddziaływań. Przy użyciu AFM oddziaływania pomiędzy pojedynczą cząstką przymocowaną do dźwigni AFM i pęcherzykiem powietrza, umieszczonym na powierzchni hydrofobowej, mogą być mierzone w środowisku wodnym. Ważna jest znajomość sił występujących przed przerwaniem filmu międzyfazowego wody oraz hydrofobowość użytej cząstki jak wykazano w obecnej pracy. Zmierzono również siły hydrodynamiczne pomiędzy zbliżającym się pęcherzykiem powietrza i cząstką mineralną. Pomimo znaczących możliwości techniki próbnika koloidalnego i AFM w badaniu oddziaływań cząstka-pęcherzyk, istnieje szereg wyzwań związanych z modyfikacją konstrukcji instrumentu, procedurą pomiarową oraz analizą teoretyczną danych. Szczególnej uwagi wymaga uwzględnienie zasięgu ugięcia dźwigni AFM oraz skanera piezoelektrycznego, wyznaczanie stałej sprężystości pęcherzyka, właściwego wyboru punktu kontaktu cząstki z pęcherzykiem oraz uwzględnienie deformacji powierzchni pęcherzyka.
Rocznik
Tom
Strony
253--272
Opis fizyczny
Bibliogr. 71 poz., rys., wykr.
Twórcy
  • Department of Metallurgical Engineering, University of Utah, 135 South 1460 East, Room 412, Salt Lake City, Utah 84112-0114, USA
autor
  • Department of Chemical Engineering, The University of Newcastle, University Drive, Callaghan NSW 2308, AUSTRALIA
autor
  • Department of Chemical Technology, Technical University of Gdansk, Narutowicza 11/12, 80-952 Gdansk, POLAND
autor
  • Department of Metallurgical Engineering, University of Utah, 135 South 1460 East, Room 412, Salt Lake City, Utah 84112-0114, USA
Bibliografia
  • ALEKSEEV V.N., 1991, Forces acting between a bubble and solid particles in a sound field, Akust. Zh. 37, 597-604.
  • ATTARD P., 2000, Thermodynamic Analysis of Bridging Bubbles and a Quantitative Comparison with the Measured Hydrophobic Attraction, Langmuir 16, 4455-4466.
  • BARTELL F.E.,OSTERHOF H.J., 1927, Determination of the wettability of a solid by a liquid, Ind. Eng. Chem. 19, 1277-1280.
  • BIGGS S.,PROUD A.D., 1997, Forces between Silica Surfaces in Aqueous Solutions of a Weak Polyelectrolyte, Langmuir 13, 7202-7210.
  • BINNIG G., QUATE C.,GERBER C., 1986, Atomic force microscope, Phys. Rev. Lett. 56, 930-933. BUTT H.-J., 1994, A technique for measuring the force between a colloidal particle in water and a bubble, J. Colloid Interface Sci. 166, 109-117.
  • CHIANG K.J.P., 1983, Electrokinetics, particle diffusion, and particle-bubble interaction in the flotation process. In Lehigh Univ.,Bethlehem,PA,USA. FIELD URL:, pp. 326 pp.
  • CHRISTENSON H.K.,CLAESSON P.M., 1988, Cavitation and the interaction between macroscopic hydrophobic surfaces, Science (Washington, D. C., 1883-) 239, 390-392.
  • CHRISTENSON H.K.,CLAESSON P.M., 2001, Direct measurements of the force between hydrophobic surfaces in water, Advances in Colloid and Interface Science 91, 391-436.
  • CLEVELAND J.P., MANNE S., BOCEK D.,HANSMA P.K., 1993, A nondestructive method for determining the spring constant of cantilevers for scanning force microscopy, Rev. Sci. Instrum. 64, 403-405.
  • COLLINS G.L., MOTARJEMI M.,JAMESON G.J., 1978, A method for measuring the charge on small gas bubbles, J. Colloid Interface Sci. 63, 69-75.
  • CRAIG V.S.J.,NETO C., 2001, In Situ Calibration of Colloid Probe Cantilevers in Force Microscopy: Hydrodynamic Drag on a Sphere Approaching a Wall, Langmuir 17, 6018-6022.
  • DAI Z., DUKHIN S., FORNASIERO D.,RALSTON J., 1998, The inertial hydrodynamic interaction of particles and rising bubbles with mobile surfaces, J. Colloid Interface Sci. 197, 275-292.
  • DERJAGUIN B.V., RABINOVICH Y.I.,CHURAEV N.V., 1978, Direct measurement of molecular forces, Nature (London) 272, 313-318.
  • DIGGINS D.,RALSTON J., 1993, Particle wettability by equilibrium capillary pressure measurements, Coal Prep. (Gordon & Breach) 13, 1-19.
  • DRELICH J.,MILLER J.D., 2001, Improved flotation deinking of sorted office papers by flocculation of ink particles, Progress in Paper Recycling 11, 38-46.
  • DRELICH J., NALASKOWSKI J., GOSIEWSKA A., BEACH E.,MILLER J.D., 2000, Long-range attractive forces and energy barriers in de-inking flotation: AFM studies of interactions between polyethylene and toner, J. Adhes. Sci. Technol. 14, 1829-1843.
  • DRZYMALA J.,LASKOWSKI J., 1980, Electrokinetic measurements in mineral processing, Fizykochem. Probl. Mineralurgii, 35-45.
  • DUCKER W.A., SENDEN T.J.,PASHLEY R.M., 1991, Direct measurement of colloidal forces using an atomic force microscope, Nature (London) 353, 239-241.
  • DUCKER W.A., XU Z.,ISRAELACHVILI J.N., 1994, Measurements of Hydrophobic and DLVO Forces in Bubble-Surface Interactions in Aqueous Solutions, Langmuir 10, 3279-3289.
  • ECKE S., PREUSS M.,BUTT H.-J., 1999, Microsphere tensiometry to measure advancing and receding contact angles on individual particles, J. Adhes. Sci. Technol. 13, 1181-1191.
  • FIELDEN M.L., HAYES R.A.,RALSTON J., 1996, Surface and Capillary Forces Affecting Air Bubble-Particle Interactions in Aqueous Electrolyte, Langmuir 12, 3721-3727.
  • FUERSTENAU D.W.,HERRERA-URBINA R., 1989, Mineral separation by froth flotation, Surfactant Sci. Ser. 33, 259-320.
  • GRACIAA A., CREUX P., LACHAISE J.,SALAGER J.-L., 2000, Zeta potential at an air-water surface related to the critical micelle concentration of aqueous mixed surfactant systems, Industrial & Engineering Chemistry Research 39, 2677-2681.
  • HORN R.G., VINOGRADOVA O.I., MACKAY M.E.,PHAN-THIEN N., 2000, Hydrodynamic slippage inferred from thin film drainage measurements in a solution of nonadsorbing polymer, Journal of Chemical Physics 112, 6424-6433.
  • HOUGH D.B.,WHITE L.R., 1980, The calculation of Hamaker constants from Lifshitz theory with applications to wetting phenomena, Adv. Colloid Interface Sci. 14, 3-41.
  • ISRAELACHVILI J.N., 1991, Intermolecular and Surface Forces. (Academic Press, New York).
  • ISRAELACHVILI J.N.,TABOR D., 1972, Measurement of van der Waals dispersion forces in the range 1.5 to 130 nm, Proc. Roy. Soc. London, Ser. A 331, 19-38.
  • KERN W.,PUOTIENE D.A., 1970, RCA Rev. 31, 187.
  • LASKOWSKI J.S., YORDAN J.L.,YOON R.H., 1989, Electrokinetic potential of microbubbles generated in aqueous solutions of weak electrolyte type surfactants, Langmuir 5, 373-376.
  • LEKKI J.,LASKOWSKI J., 1976, Dynamic interaction in particle-bubble attachment in flotation, Colloid Interface Sci., [Proc. Int. Conf.], 50th 4, 331-345.
  • LINS F.F., MIDDEA A.,ADAMIAN R., 1995, Hamaker constants of hydrophobic minerals, Process. Hydrophobic Miner. Fine Coal, Proc. UBC-McGill Bi-Annu. Int. Symp. Fundam. Miner. Process., 1st, 61-75.
  • LUTTRELL G.H.,YOON R.H., 1992, A hydrodynamic model for bubble-particle attachment, J. Colloid Interface Sci. 154, 129-137.
  • MAEDA N.,SENDEN T.J., 2000, A Method for the Calibration of Force Microscopy Cantilevers via Hydrodynamic Drag, Langmuir 16, 9282-9286.
  • MIKLAVCIC S.J., 1998, Perturbation analysis of droplet deformation under electrical double layer forces, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 57, 561-568.
  • MIKLAVCIC S.J., HORN R.G.,BACHMANN D.J., 1995, Colloidal Interaction between a Rigid Solid and a Fluid Drop, Journal of Physical Chemistry 99, 16357-16364.
  • NALASKOWSKI J., DRELICH J., HUPKA J.,MILLER J.D., 1999a, Preparation of hydrophobic microspheres from low-temperature melting polymeric materials, J. Adhes. Sci. Technol. 13, 1-17.
  • NALASKOWSKI J., HUPKA J.,MILLER J.D., 1999b, Influence of dissolved gas on the interaction forces between hydrophobic surfaces in water - atomic force microscopy studies, Phys. Prob. Min. Process. 33, 129-141.
  • NALASKOWSKI J., VEERAMASUNENI S.,MILLER J.D., 1998, Interaction forces in the flotation of colemanite as measured by atomic force microscopy, Innovations Miner. Coal Process., Proc. Int. Miner. Process. Symp., 7th, 159-165.
  • NGUYEN A.V., 1999, Hydrodynamics of liquid flows around air bubbles in flotation: a review, Int. J. Miner. Process. 56, 165-205.
  • NGUYEN A.V.,EVANS G.M., 2002, The Liquid Flow Force on a Particle in the Bubble-Particle Interaction in Flotation, J. Colloid Interface Sci. 246, 100-104.
  • NGUYEN A.V., EVANS G.M.,SCHULZE H.J., 2001, Prediction of van der Waals interaction in bubbleparticle attachment in flotation, Int. J. Miner. Process. 61, 155-169.
  • NGUYEN A.V., NALASKOWSKI J.,MILLER J.D., 2002, The dynamic nature of contact angle on sphere measured by atomic force microscopy, J. Colloid Interface Sci., submitted.
  • NGUYEN A.V.,STECHEMESSER H., 1998, Dynamics of the impact interaction between a fine solid sphere and a plane gas-liquid interface, Stud. Interface Sci. 6, 525-562.
  • ODEGAARD H., 2001, The use of dissolved air flotation in municipal wastewater treatment, Water Sci. Technol. 43, 75-81.
  • PARKER J.L.,ATTARD P., 1992, Deformation of surfaces due to surface forces, Journal of Physical Chemistry 96, 10398-10405.
  • PARKER J.L., CLAESSON P.M.,ATTARD P., 1994, Bubbles, cavities, and the long-ranged attraction between hydrophobic surfaces, Journal of Physical Chemistry 98, 8468-8480.
  • PAZHIANUR R.,YOON R.H., 1997, Direct force measurement for a sulfide mineral flotation system, Processing of Complex Ores: Mineral Processing and the Environment, Proceedings of the UBCMcGill Bi-Annual International Symposium on Fundamentals of Mineral Processing, 2nd, Sudbury, Ont., Aug. 17-19, 1997, 247-256.
  • PREUSS M.,BUTT H.-J., 1998a, Direct Measurement of Particle-Bubble Interactions in Aqueous Electrolyte: Dependence on Surfactant, Langmuir 14, 3164-3174.
  • PREUSS M.,BUTT H.-J., 1998b, Measuring the contact angle of individual colloidal particles, J. Colloid Interface Sci. 208, 468-477.
  • PREUSS M.,BUTT H.-J., 1999, Direct measurement of forces between particles and bubbles, Int. J. Miner. Process. 56, 99-115.
  • PUGH R.J., AKSOY S.,YOON R.H., 1994, Hydrophobicity and film rupture in flotation, Dispersion Aggregation, Proc. Eng. Found. Conf., 141-154.
  • RABINOVICH Y.I.,YOON R.H., 1994, Use of Atomic Force Microscope for the Measurements of Hydrophobic Forces between Silanated Silica Plate and Glass Sphere, Langmuir 10, 1903-1909.
  • RALSTON J.,DUKHIN S.S., 1999, The interaction between particles and bubbles, Colloids Surf., A 151, 3-14.
  • RALSTON J., DUKHIN S.S.,MISHCHUK N.A., 1999, Inertial hydrodynamic particle-bubble interaction in flotation, Int. J. Miner. Process. 56, 207-256.
  • RAMIREZ E.R.,JOHNSON D.L., 1980, Wastewater flotation. In Can., ((Dravo Corp., USA). Ca), pp. 29 pp.
  • SADER J.E., LARSON I., MULVANEY P.,WHITE L.R., 1995, Method for the calibration of atomic force microscope cantilevers, Rev. Sci. Instrum. 66, 3789-3798.
  • SAULNIER P., LACHAISE J., MOREL G.,GRACIAA A., 1996, Zeta potential of air bubbles in surfactant solutions, J. Colloid Interface Sci. 182, 395-399.
  • SCHELUDKO A., TOSHEV B.V.,BOJADJIEV D.T., 1976, Attachment of particles to a liquid surface (capillary theory of flotation), J. Chem. Soc., Faraday Trans. 1 72, 2815-2828.
  • SHEN H., PUGH R.J.,FORSSBERG E., 2002, Floatability, selectivity and flotation separation of plastics by using a surfactant, Colloids Surf., A 196, 63-70.
  • SIEBOLD A., NARDIN M., SCHULTZ J., WALLISER A.,OPPLIGER M., 2000, Effect of dynamic contact angle on capillary rise phenomena, Colloids Surf., A 161, 81-87.
  • SIEBOLD A., WALLISER A., NARDIN M., OPPLIGER M.,SCHULTZ J., 1997, Capillary rise for thermodynamic characterization of solid particle surface, J. Colloid Interface Sci. 186, 60-70.
  • SKVARLA J.,KMET S., 1993, What is the role of hydrophilic/hydrophobic surface forces and/or polar interfacial interactions in the interaction between bubbles and minerals?, Colloids Surf., A 79, 89-95.
  • SKVARLA J.V., 2001, Hydrophobic interaction between macroscopic and microscopic surfaces. Unification using surface thermodynamics, Advances in Colloid and Interface Science 91, 335-390.
  • TOIKKA G., HAYES R.A.,RALSTON J., 1998, Surface forces between zinc sulfide and silica in aqueous electrolyte, Colloids Surf., A 141, 3-8.
  • TYRRELL J.W.G.,ATTARD P., 2002, Atomic force microscope images of nanobubbles on a hydrophobic surface and corresponding force-separation data, Langmuir 18, 160-167.
  • USUI S., SASAKI H.,MATSUKAWA H., 1981, The dependence of zeta potential on bubble size as determined by the Dorn effect, J. Colloid Interface Sci. 81, 80-84.
  • YOON R.H., 1992, Hydrodynamic and surface forces in bubble-particle interactions, Mines Carrieres: Tech., 74-79.
  • YOON R.H., 2000, The role of hydrodynamic and surface forces in bubble-particle interaction, Int. J. Miner. Process. 58, 129-143.
  • YOON R.-H., FLINN D.H.,RABINOVICH Y.I., 1997, Hydrophobic interactions between dissimilar surfaces, J. Colloid Interface Sci. 185, 363-370.
  • YOON R.-H.,MAO L., 1996, Application of extended DLVO theory, IV. Derivation of flotation rate equation from first principles, J. Colloid Interface Sci. 181, 613-626.
  • YOON R.-H.,PAZHIANUR R., 1998, Direct force measurement between hydrophobic glass sphere and covellite electrode in potassium ethyl xanthate solutions at pH 9.2, Colloids Surf., A 144, 59-69.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT6-0001-0023
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.