Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The main goal of this paper is to consider the regularity and convexity properties of a given type of approximately generalized convex functions, namely approximately Breckner s-convex functions (see the origin of the definition in Breckner, 1978). Our main result is a Bernstein-Doetsch type one. It is proved that the local boundedness of such a type of function from above at a point of its domain implies approximate convexity and stronger regularity properties of the function in question on the whole domain.
Czasopismo
Rocznik
Tom
Strony
91--99
Opis fizyczny
Bibliogr. 20 poz.
Twórcy
autor
autor
autor
- Department of Applied Mathematics and Probability Theory, University of Debrecen, H-4010 Debrecen, Pf. 12, Hungary, burai.pal@inf.unideb.hu
Bibliografia
- BERNSTEIN, F. and DOETSCH, G. (1915) Zur Theorie der konvexen Funktionen. Math. Annalen 76, 514-526.
- BURAI, P., HÁZY, A. and JUHÁSZ, T. (2009) Bernstein-Doetsch type results for s-convex functions. Publ. Math. Debrecen 75/1-2, 23-31. Dedicated to the 70th birthday of Professor Zoltán Daróczy
- BRECKNER, W.W. (1978) Stetigkeitsaussagen für eine Klasse verallgemeinerter konvexer Funktionen in topologischen linearen Räumen. Publ. Inst. Math. (Beograd) 23, 13-20.
- BRECKNER, W. W. (1994) Holder-continuity of certain generalized convex functions. Optimization 28, 201-209.
- BRECKNER, W.W. and ORBAN, G. (1978) Continuity properties of rationally s-convex mappings with values in ordered topological liner space. „Babes-Bolyai” University, Kolozsvár.
- HÁZY, A. (2007) On the stability of t-convex functions. Aeąuationes Math. 74, 210-218.
- HÁZY, A. and PÁLES, Zs. (2004) Approximately midconvex functions. Bulletin London Math. Soc. 36, 339-350.
- HUDZIK, H. and MALIGRANDA, L. (1994) Sonie remarks on Si-convex functions. Aequationes Math. 48, 100-111.
- HYERS, D.H. and ULAM, M. (1952) Approximately convex functions. Proc.-Amer.Math.Soc. 3, 821-828.
- KUCZMA, M. (1985) An Introduction to the Theory of Functional Eguations and Inegualities. Państwowe Wydawnictwo Naukowe - Uniwersytet Śląski, Warszawa-Kraków-Katowice.
- LUC, D.T., NGAI, H.V. and THERA, M. (2000) Approximate convex functions. J. Nonlinear Convex Anal. 1 (2), 155-176.
- NG, C.T. and NIKODEM, K. (1993) On approximately convex functions. Proc. Amer. Math. Soc. 118 (1), 103-108.
- PÁLES, Zs. (2000) Bernstein-Doetsch-type results for generał functional inequalities. Rocznik Nauk.-Dydakt. Prace Mat. 17, 197-206, Dedicated to Professor Zenon Moszner on his 70th birthday.
- PÁLES, Zs. (2003) On approximately convex functions. Proc.Amer.Math.Soc. 131 (1), 243-252.
- PICCARD, S. (1942) Sur des ensembles parfaits. Mem. Univ. Neuchâtel, 16, Secrétariat de l’ Université, Neuchâtel.
- PYCIA, M. (2001) A direct proof of the s-Hölder continuity of Breckner s-convex functions. Aequationes Math., 61, 128-130.
- STEINHAUS, H. (1920) Sur les distances des points des ensembles de mesure positive. Fund. Math. l, 93-104.
- TABOR, J. and TABOR, J. (2009a) Generalized approximate midconvexity. Control and Cybernetics 38 (3), 656-669.
- TABOR, J. and TABOR, J. (2009b) Takagi functions and approximate midconvexity. J.Math.Anal.Appl. 356, 729-737.
- TABOR, J. and TABOR, J. (2009c) Applications of de Rham Theorem in approximate midconvexity. Journal of Difference Equations and Applications.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT5-0070-0006