Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The natural quotient map q from the space of based loops in the Hawaiian earring onto the fundamental group provides a naturally occuring example of a quotient map such that q x q fails to be a quotient map. With the quotient topology, this example shows π1(X,p) can fail to be a topological group if X is locally path connected.
Słowa kluczowe
Wydawca
Rocznik
Tom
Strony
77--83
Opis fizyczny
Bibliogr. 14 poz.
Twórcy
autor
- Department of Mathematics and Statistics, Mississippi State University, Drawer MA, Mississippi State, MS 39762, U.S.A., fabel@ra.msstate.edu
Bibliografia
- [1] D. K. Biss, A generalized approach to the fundamental group, Amer. Math. Monthly 107 (2000), 711-720.
- [2] D. K. Biss, The topological fundamental group and generalized covering spaces, Topology Appl. 124 (2002), 355-371.
- [3] J. Brazas, The topological fundamental group and free topological groups, Topology Appl.. 148 (2011), 779-802.
- [4] J. S. Calcut and J. D. McCarthy, Discreteness and homogeneity of the topological fundamental group, Topology Proc. 34 (2009), 339-349.
- [5] J. W. Cannon and G. R. Conner, The combinatorial structure of the Hawaiian earring group, Topology Appl. 106 (2000), 225-271.
- [6] B. de Smit, The fundamental group of the Hawaiian earring is not free, Int. J. Algebra Comput. 2 (1992), 33-37.
- [7] P. Fabel, Metric spaces with discrete topological fundamental group, Topology Appl. 154 (2007), 635-638.
- [8] P. Fabel, Completing Artin’s braid group on infinitely many strands, J. Knot Theory Ramif. 14 (2005), 979-991.
- [9] P. Fabel, A retraction theorem for topological fundamental groups with application to the Hawaiian earring, Topology Appl. 154 (2007), 722-724.
- [10] P. Fabel, The topological Hawaiian earring group does not embed in the inverse limit of free groups, Algebr. Geom. Topol. 5 (2005), 1585-1587.
- [11] H. Ghane, Z. Hamed, B. Mashayekhy, and H. Mirebrahimi, Topological homotopy groups, Bull. Belg. Math. Soc. Simon Stevin 15 (2008), 455-464.
- [12] J. W. Morgan and I. Morrison, A van Kampen theorem for weak joins, Proc. London Math. Soc. (3) 53 (1986), 562-576.
- [13] J. Munkres, Topology, 2nd ed., Prentice-Hall, 1999.
- [14] H. Sahleh and A. G. Sanatee, Embedding of the fundamental topological group in the inverse limit of discrete groups, Int. J. Contemp. Math. Sci. 3 (2008), 305-310.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT5-0065-0038
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.