Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
For a function ƒ ∈ L[wzór] (Rn) the notion of p-mean variation of order 1, V[wzór](ƒ, Rn) is defined. It generalizes the concept of F. Riesz variation of functions on the real line R1 to Rn, n > 1. The characterisation of the Sobolev space W1,p(Rn) in terms of V[wzór](ƒ, Rn) is directly related to the characterisation of W1,p(Rn) by Lipschitz type pointwise inequalities of Bojarski, Hajłasz and Strzelecki and to the Bourgain-Brezis-Mironescu approach.
Słowa kluczowe
Wydawca
Rocznik
Tom
Strony
65--75
Opis fizyczny
Bibliogr. 25 poz.
Twórcy
autor
- Institute of Mathematics, Polish Academy of Sciences, 00-956 Warszawa, Poland, b.bojarski@impan.pl
Bibliografia
- [1] S. Bochner and A. E. Taylor, Linear functionals on certain spaces of abstractly-valued functions, Ann. of Math. (2) 39 (1938), 913-944.
- [2] B. Bojarski, Pointwise characterization of Sobolev classes, Proc. Steklov Inst. Math. 255 (2006), 65-81.
- [3] B. Bojarski, Another look at some problems of QC theory and Sobolev function spaces, in preparation.
- [4] B. Bojarski and P. Hajłasz, Pointwise inequalities for Sobolev functions and some applications, Studia Math. 106 (1993), 77-92.
- [5] B. Bojarski, P. Hajłasz and P. Strzelecki, Improved Ck'λ approximation of higher order Sobolev functions in norm and capacity, Indiana Univ. Math. J. 51 (2002), 507-540.
- [6] J. Bourgain, H. Brezis and P. Mironescu, Another look at Sobolev spaces, in: Optimal Control and Partial Diferential Equations, J. L. Menaldi et al. (eds.), IOS Press, Amsterdam, 2001, 439-455.
- [7] Yu. A. Brudnyi, Spaces defined by local polynomial approximation, Tr. Moskov. Mat. Obshch. 24 (1971), 69-132 (in Russian); English transl.: Trans. Moscow Math. Soc. 24 (1971), 73-139.
- [8] Yu. A. Brudnyi, Sobolev spaces and their relatives: local polynomial approximation approach, in: Sobolev Spaces in Mathematics II, V. Maz’ya (ed.), Int. Math. Ser. (N.Y.) 9, Springer, New York, 2009, 31-68.
- [9] J. Diestel and J. J, Uhl, Vector Measures, Math. Surveys 15, Amer. Math. Soc., Providence, 1977.
- [10] M. de Guzmán, Differentiation of Integrals in Rn, Lecture Notes in Math. 481, Springer, Berlin, 1975.
- [11] P. Hajłasz, Sobolev spaces on an arbitrary metric space, Potential Anal. 5 (1996), 403-415.
- [12] P. Hajłasz, A new characterization of the Sobolev space, Studia Math. 159 (2003), 263-275.
- [13] P. Halmos, Measure Theory, Van Nostrand, New York 1950.
- [14] J. Heinonen, Lectures on Analysis on Metric Spaces, Springer, New York 2001.
- [15] J. Heinonen, Lectures on Lipschitz Analysis, Univ. of Jyväskylä, Report 100, 2005.
- [16] J. Kinnunen and E. Saksman, Regularity of the fractional maximal function, Bull. London Math. Soc. 35 (2003), 529-535.
- [17] L. D. Kudryavtsev, On the p-variation of mappings and summability of powers of the Radon-Nikodým derivative, Uspekhi Mat. Nauk 10 (1955), no. 2, 167-174 (In Russian).
- [18] J. Malý, Absolutely continuous functions of several variables, J. Math. Anal. Appl. 231 (1999), 492-508.
- [19] P. Mattila, Geometry of Sets and Measures in Euclidean Spaces, Cambridge Stud. Adv. Math. 44, Cambridge Univ. Press, Cambridge, 1995.
- [20] Yu. T. Medvedev, A generalization of a theorem of F. Riesz, Uspekhi Mat. Nauk 8 (1953), no. 6, 115-118 (in Russian).
- [21] I. P. Natanson, Theory of Functions of a Real Variable, 2nd ed., Gosizdat, Moskva, 1957 (in Russian).
- [22] T. Rado and P. V. Reichelderfer, Continuous Transformations in Analysis, Springer, New York, 1955.
- [23] F. Riesz, Untersuchungen über Systeme integrierbarer Funktionen, Math. Ann. 69 (1910), 449-497.
- [24] F. Riesz et B. Sz.-Nagy, Lemons d’analyse fonctionnelle, Akad. Kiadó, Budapest, 1952.
- [25] W. P. Ziemer, Weakly Differentiable Functions. Sobolev Spaces and Functions of Bounded Variation, Grad. Texts in Math. 120, Springer, Berlin, 1989.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT5-0065-0037