PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

On the possible reversal of an earth-scale top

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We work with a theory based on a hypothetical torque corresponding to the revolution gyroscope-effect, an effect ultimately caused by axial precession Φ. Applying this theory to an Earth-scale top, the reversal time from θ ≅ 180° to θ ≅ 0° can be estimated to be roughly 6 x 109 years. The reversal time from θ ≅ 180° to θ = 23.45° , meanwhile, can be estimated to be 4.6 x 109 years. This hypothetical torque can be validated by satellite experiments.
Rocznik
Strony
375--385
Opis fizyczny
Bibliogr. 26 poz., wykr.
Twórcy
autor
Bibliografia
  • 1. W. R. WARD, Climatic variation on Mars 1. Astronomical theory of insolation, J. Geophys. Res., 79, 3375-3386, 1974.
  • 2. J. LASKAR, P. ROBUTEL, The chaotic obliquity of the planets, Nature, 361, 608-612. 1993.
  • 3. J. LASKAR, F. JOUTEL, P. ROBUTEL, Stabilization of the Earth’s Obliquity by the Moon, Nature, 361, 615-617, 1993.
  • 4. P. GOLDREICH, History of the Lunar Orbit, Rev. Geophys., 4, 411-439, 1966.
  • 5. D. P. RUBINCAM, Mars: Change in axial tilt due to climate?, Science, 248. 720-721, 1990; D. P. RUBINCAM, The obliquity of Mars and “climate friction”, J. Geophys. Res., 98, 10827-10832, 1993.
  • 6. T. ITO, K. MATSUDA, Y. HAMANO and T. MATSUI, Climate friction: A possible cause for secular drift of Earth’s obliquity, J. Geophys. Res., 100, 15147-15161, 1995.
  • 7. S. AOKI, Friction between mantle and core of the Earth as a cause of the secular change in obliquity, Astron. J., 74, 284-291, 1969; S. AOKI, C. KAKUTA, The excess secular change in the obliquity of the ecliptic and its relation to the internal motion of the Earth, Celest. Mech., 4, 171-181, 1971.
  • 8. M. G. ROCHESTER, The secular decrease of obliquity due to dissipative core-mantle coupling, Geophys. J. R. Astr. Soc., 46, 109-126, 1976.
  • 9. W. K. HARTMANN, S. M. VAIL, Giant impactors: plausible sizes and populations, [in:] Origin of the Moon, W. K. HARTMANN, R. J. PHILLIPS, G. J. TAYLOR [Eds.]. Lunar and Planetary Institute, Houston, Tex., 551-566, 1986.
  • 10. K. HARA, Another reversing gyroscope, J. Tech. Phys., 49, 27-37, 2008; here referred to as “Paper I”.
  • 11. K. HARA, On the possible reversal of a satellite spin axis, J. Tech. Phys., 50, 75-85. 2009; here referred to as “Paper II”.
  • 12. J. L. KIRSCHVINK, Late Proterozoic low-latitude global glaciation: The snowball Earth, [in:] The Proterozoic Biosphere, J. W. SCHOF, C. KLEIN [Eds.], Cambridge Univ. Press, New York, Sec. 2.3, 1992.
  • 13. P. F. HOFFMAN, A. J. KAUFMAN, G. P. HALVERSON, D. P. SCHRAG, A Neoproterozoic Snowball Earth, Science, 281, 1342-1346, 1998.
  • 14. G. E. WILLIAMS, History of the Earth’s obliquity, Earth-Science Rev., 34, 1-45, 1993.
  • 15. YOSHIHIRO TERAISHI (1903-1955) once proposed a hypothesis of reversal in the Earth’s obliquity (Ref. [16]) inductively from a study of the Earth’s climatic and biotic histories. His hypothesis is the following: 1. If the Earth and other planets have been formed through the accumulation of planetesimals, as assumed, they can be considered to have been born in the retrograde (θ ≡ 180°) (planetesimals revolve differentially around the Sun, that is, those nearer to the Sun travel at a higher velocity [the differences of the velocities of planetesimals are memorized when planetesimals collide]); 2. The spin axis of the Earth has been rising from θ = 180° (retrograde), has passed through θ = 90° (horizontal state) and θ0 = 23.45° (present obliquity), and will arrive at θ = 0° (prograde) in the long run; 3. The Earth’s obliquity decides on the climate in each geological age; 4. The climate decides the evolution of life. If the Earth’s obliquity has been rising from θ ≡ 180° to θ = 23.45° for 4.6 x 109 years (the age of the Earth), its average variation can be calculated at only θ = -0.000123"/y, a level far too small to observe. Thus, the Teraishi hypothesis must be proved by other methods. This paper proposes this possibility.
  • 16. H. ITO, The reversal of the Earth’s obliquity, the glacial age, and the evolution of life, KAGAKU ASAHI, 1, 50-54 [in Japanese], 1989; H. ITO, The reversal of the Earth’s obliquity, the glacial age, and the evolution of life, KAGAKU ASAHI, 2, 54-58 [in Japanese], 1989.
  • 17. J. B. SCARBOROUGH, The Gyroscope, Interscience, INC., New York, Ch. X. 1958.
  • 18. S. CHANDRASEKHAR, Newton’s Principia for the Common Reader, Oxford University Press, Ch. 23. 1995.
  • 19. D. BROUWER and G. M. CLEMENCE, Methods of Celestial Mechanics, Academic Press, New York and London, Ch. 1, 1961.
  • 20. R. P. FEYNMAN, R. B. LEIGHTON, M. L. SANDS, The Feynman Lectures on Physics, Vol. I, Addison-Wesley Publishing Company, Massachusetts. Ch. 48, 1963.
  • 21. M. MILANKOVITCH, Kanon der Erdbesirahlung und seine Anwendung, das Eiszeitenproblem, Königliche Serbische Akademie, Belgrad, Chs. 6, 7 [in Japanese translated by K. KASHIWAYA et al. Kokonshoin, Tokyo, 1992], 1941.
  • 22. C. W. ALLEN, Astrophysical Quantities, The Athlone Press, London, 17, 1973.
  • 23. Encyclopaedia Britannica, Encyclopaedia. Britannica, Inc., Chicago, 8, 836, 1990.
  • 24. VAN WOERKOM, The astronomical theory of climate changes, [in:] Climatic Change, H. SHAPLEY [Ed.], Harvard Univ. Press, Cambridge. 147-157, 1960.
  • 25. A. HOLMES, D. L. HOLMES, Principles of Physical Geology, Thomas Nelson and Sons Ltd., U.K., Ch. 13, 1978.
  • 26. D. M. WILLIAMS, J. F. KASTING, L. A. FRAKES, Low-latitude glaciation and rapid changes in the Earth’s obliquity explained by obliquity-oblateness feedback, Nature, 396, 453-455, 1998.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT5-0064-0005
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.