PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Nanothermomechanics

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper concerns the dependence of thermomechanical properties of three-dimensional solid nanoclusters on the cluster size as well as on its shape. Investigations are restricted to the class of so-called homogeneous thermodynamic processes, with kinematics based on affine group and referred to the single whole body, not an infinite system of subbodies. It is shown that then the thermodynamics of nanoclusters is consistent with dynamics of amnely-rigid bodies (constrained or not and elastic as well as admitting viscosity effects). The main topics discussed are: (i) a group-theoretical description of structurally stable solid nanoclusters; (ii) a phenomenological model of mechanical properties of nanoclusters, revealing the coexistence of solid and liquid states in a finite interval of absolute temperature.
Rocznik
Strony
353--374
Opis fizyczny
Bibliogr. 35 poz.
Twórcy
  • Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, 02-106 Warszawa, Poland, atrzes@ippt.gov.pl
Bibliografia
  • 1. P. H. BUFFAT, J.-P. BOREL, Size effect and melting temperature of gold particles, Phys. Rev. A., 13, 2287-2297, 1976.
  • 2. L. I. TRUSOW, V. G. GRYANOW, Higly dispersed systems and nanocrystals, Nanostruct. Mat., 1, 251-254, 1992.
  • 3. C. KOCH, Bulk behavior of nanostructured materials [in:] Nanostructure Science and Technology, R. W. SIEGEL, E. HU and M. C. ROCO [Eds.], Kluwer Academic Publishers, Dordrecht 1999.
  • 4. E. L. NAGAEV, Small metallic particles [in Russian], YEN, 162, 9, 50-124, 1992.
  • 5. M. BRACK, Metallic clusters and magic numbers, Sci. Am. [Polish ed.], 2(78), 34-39, 1998.
  • 6. J. M. MONTEJANO-CARRIZALES, J. L. MORÁN-LOPEZ, Geometrical characteristic of compact nanoclusters, Nanostruct. Mat., 1, 397-409, 1992.
  • 7. B. M. SMIRNOV, Transition cluster-macroscopic system, JETP, 108, 1810-1820, 1995.
  • 8. T. BACHELES, H.-J. GUNTHERODT, R. SCHAFER, Melting of isolated tin particles, Phys. Rev, Lett., 85, 1250-1253, 2000.
  • 9. A. TRZĘSOWSKI, Nanomaterial clusters as macroscopically small size effect bodies, (Part I and II), Arch. Mech.. 52, 159-197, 2000.
  • 10. A. TRZĘSOWSKI, On the dynamics and thermodynamics of small Markov-type material systems, arXiv.org e-Print Archive, 2008: http://arxiv.org/abs/0805.0944.
  • 11. J. SŁAWIANOWSKI, Analytical mechanics [in Polish], PWN, Warsaw 1982.
  • 12. C. TRUESDELL, Rational thermodynamics, McGraw-Hill, New York 1969.
  • 13. C. TRUESDELL, A first course in rational continuum mechanics, John Hopkins University Press, Baltimore 1972.
  • 14. T. GIEBULTOWICZ, Breathing life into an old model, Nature, 408, 6810, 299-301, 2000.
  • 15. R. SCHAFER, Melting of isolated tin nanopartides, Phys. Rev. Lett., 85, 6, 1250-1253, 2000.
  • 16. A. TRZĘSOWSKI, On the quasi-solid state of solids nanoclusters, J. Tech. Phys., 44, 4, 385-396, 2003.
  • 17. A. I. GUSEV, Effects of nanocrystalline state [in Russian], YEN, 168, 1, 55-83, 1998.
  • 18. A. I. M. RAE, Waves, particles and fullerenes, Nature. 401, 6754, 651 653, 1999.
  • 19. K. SATTLER, C60 and beyond: from magic numbers to new materials, Jpn. J. Appl. Phys., 32, 1428-1432, 1993.
  • 20. A. TRZĘSOWSKI, On constrained size-effect bodies, Arch. Mech., 36, 2, 185-193, 1984.
  • 21. A. TRZĘSOWSKI, Tensility and compressibility of axially symmetric nanoclusters, Part I: simplified modelling, J. Tech. Phys., 45, 2, 141-153, 2004.
  • 22. J. MORZYMAS, Applications of the group theory in physics [in Polish], PWN, Warsaw 1997.
  • 23. J. A. WOLF, Spaces of constant curvature, University of California, Berkeley 1972.
  • 24. F. SPAEPAN, Five-fold symmetry in liquids, Nature, 409, 781-782, 2000.
  • 25. A. BLINOWSKI, A. TRZĘSOWSKI, Surface energy in liquids and the Hadwiger integral theorem, Arch. Mech., 33, 133-146, 1981.
  • 26. A. HADWIGER, Altes und neues über konvexe Körper, Birkhäuser, Basel 1955.
  • 27. J. BODZIONY, A characteristic of spatial structure of crystalline materials [in:] Geometrical methods in physics and technology, P. KUCHARCZYK [Ed.], WNT, Warsaw 1968, [in Polish].
  • 28. A. COTTREL, The mechanical properties of matter, John Willey and Sons, New York 1964.
  • 29. J. CHRISTIAN, Transformations in metals and alloys, Part I, Pergamon Press, Oxford 1975.
  • 30. L. A. SANTALO, Integral geometry and geometric probability, Addison-Wesley, London 1976.
  • 31. G. PÓLYA, G. SZEGO, Isoperimetric inequalities in mathematical physics, Princeton University Press, Princeton 1954.
  • 32. M. SYSŁO, Generalized Stokes law for connected solid figures [in:] Geometrical methods in physics and technology, P. KUCHARCZYK [Ed.], WNT, Warsaw 1968, [in Polish].
  • 33. G. A. KORN, T. M. KORN, Mathematical handbook, McGraw-Hill, New York 1968, [Russian translation, 1984].
  • 34. R. W. SIEGEL, Creating nanophase materials, Sci. Am. 275, 42-47, 1996.
  • 35. A. K. GEIM. K. S. NOVOSELOV, The rise of graphene, Nature Materials. 6. 183-191, 2007.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT5-0064-0004
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.