Identyfikatory
Warianty tytułu
Short introduction to photo-electrolysis cells
Języki publikacji
Abstrakty
Jednym z wyzwań stojących obecnie przed ludzkością jest produkcja czystej energii ze źródeł odnawialnych. Jedną z alternatyw jest wodór produkowany z rozkładu wody za pomocą energii słonecznej w ogniwach fotoelektrochemicznych (PEC). W artykule autorzy wprowadzają czytelnika pokrótce w tematykę PEC. Przedstawiony zostaje obecny stan wiedzy i stosowane rozwiązania. Obecnie wymagania wobec PEC są łatwe do sformułowania, ale spełnienie ich wszystkich jest jednym z wyzwań które stoją przed badaczami. W artykule zostały przedstawione również dziedziny w których poszukiwania wydają się niezbędne aby osiągnąć sukces w rozkładzie wody.
A significant issue currently faced by humanity is the production of clean renewable energy. The decomposition of hydrogen produced from water using solar energy in photo electrolysis cells (PEC) is one of the possible methods of tackling the problem. In this article, the authors briefly introduce the reader to the theme of the PEC, ath the same time presenting the contemporary state of knowledge and rpviding exemplary solutions. A present, the requirements of photo electrolysis cells are easy to formulate, but their fulfillment is still a substanial challenge awaiting researchers. The article discusses the areas in which the search enquiry appears to be indispensable for achieving success in the distribution of water.
Czasopismo
Rocznik
Tom
Strony
9--17
Opis fizyczny
Bibliogr. 54 poz., wykr.
Twórcy
autor
autor
- Instytut Technologii Materiałów Elektronicznych, ul. Wólczyńska 133, 01-919 Warszawa, krzysztof.bienkowski@itme.edu.pl
Bibliografia
- [1] http://rredc.nrel.gov/solar/spectra/aml.5/
- [2] Verne J. Tajemnicza Wyspa (tłumaczenie własne)
- [3] Bard A. J., Fox M.A.: Artificial photosynthesis: solar splitting of water to hydrogen and oxygen, Ace. Chem. Res., 28, (1995), 141-145
- [4] Grimes C. A., Varghese O. K., Ranjan S.: Light, water, hydrogen: The solar generation of hydrogen by water photoelectrolysis. Springer, (2008), 546
- [5] Yurum Y.: Hydrogen energy system: Production and utilization of hydrogen and future aspects. Springer, (1995)
- [6] Wendt H.: Electrochemical hydrogen technologies: Electrochemical production and combustion of hydrogen. Elsevier, (1990)
- [7] Huynh W. U., Dittmer J. J., Alivisatos A. P.: Hybrid nanorod-polymer solar cells. Science, 295, (2002), 2425-2427
- [8] Schultz K., Herring S., Lewis M., Summers W.A.: The hydrogen reaction. Nucl Eng Int., 50, (2005),10-19
- [9] Abanades S., Charvin P., Flamant G., Neveu P.: Screening of water-splitting thermochemical cycles potentially attractive for hydrogen production by concentrated solar energy. Energy, 31, (2006), 2805-2822
- [10] Volkov A.G., Volkova-Gugeshashvili M.I., Brown-McGauley C.L., Osei A.J.: Nanodevices in nature: electrochemical aspects. Electrochim. Acta, 52, (2007), 2905-2912
- [11] Ball M., Wietschel M.: The hydrogen economy: Opporunites and challenges, Cambridge Press, (2009)
- [12] Rifkin J.: The hydrogen economy, Tarcher, (2003)
- [13] Ekins P.: Hydrogen energy: Economics and social challenges, Earthscan, 2010
- [14] Turner J. A.: Science: A realizable renewable energy future, 285, (1999), 687-689
- [15] Bak T., Nowotny J., Rekas M., Sorrell C.C.: Photo-electrochemical properties of the {TiO2-Pt} system in aqueous solutions, Int. J. Hydrogen Energy, 27, 2002, 19-26
- [16] El Zayat M.Y., Saed M.O., El Dessouki M.S.: Photoelectrochemical properties of dye sensitized Zr-doped SrTiO3 electrodes, Int. J. Hydrogen Energy, 23, (1998), 59-266
- [17] Vayssieres L.: On Solar Hydrogen & Nanotechnology, Singapore, 2009
- [18] Khaselev O., Bansal A., Turner J. A.: High-efficiency integrated multijunction photovoltaic/electrolysis systems for hydrogen production, J. of Hydrogen Energy, 26, (2001), 127-132
- [19] Andreev V. M.: Practical handbook of photovoltaics: fundamentals and applications, Elsevier, 2003
- [20] Gratzel M.: Photoelectrochemical cells, Nature, 414, (2001), 338-344
- [21] Marsen B., Miller E. I. Paluselli D. Rocheleau R. E.: Progress in sputtered tungsten trioxide for photoelectrode applications, J. of Hydrogen Energy, 32, (2007), 3110-3115
- [22] Cardon E, Gomes W. P., Dekeyser W.: Photovoltaic and photoelectrochemica solar energy convesion, Pleum Press, 1981
- [23] LeRoy R. L.: Industrial water electrolysis: present and future, Int. J. of Hydrogen Energy, 8, (1984), 401-417
- [24] Durta S.: Technology assessment of advanced electrolytic hydrogen production. Int. J. of Hydrogen Energy, 15, (1990), 379-386
- [25] Nowotny J., Sorrell C.C., Bak T., Sheppard L.R.: Solar-hydrogen: unresolved problems in solid-state science, Solar Energy, 78, 2005, 593-602
- [26] Bard A. J.: Photoelectrochemistry. Science, 207, (1980), 139-144
- [27] Nozik A. J., Memming R.: Physical chemistry of semiconductor-liquid interfaces, J. Phys. Chem., 100, (1996), 13061-13078
- [28] Pleskov Y. Y, Gurevich Y. V.: Semiconductor photochemistry, Consultants Bureau, 1986
- [29] Rajeshwar K. I.: Hydrogen generation at irradiated oxide semiconductor-solution interfaces, Appl. Electrochem., 37, (2007), 765-787
- [30] Murphy A. B., Barnes P. R. F., Randeniya L. K., Plumb I. C., Grey I. E., Home M. D., Glasscock J. A.: Efficiency of solar water splitting using semiconductor electrodes, Int. J. of Hydrogen Energy, 31, (2006), 1999-2017
- [31] Wen-Tao Sun, Yuan Yu, Hua-Yong Pan, Xian-Feng Gao, Qing Chen, Lian-Mao Peng: CdS quantum dots 16 sensitized TiO2 nanotube-array photoelectrodes, J. Am. Chem. Soc., 130, (2008), 1124-1125
- [32] Solarska R, Alexander B.D., Augustyński J.: Electrochromic and photoelectrochemical characteristics of nanostructured WO3 films prepared by a sol-gel method, Comptes Rendus Chimie, 9, (2006), 301-306
- [33] Santato C., Ulmann M., Augustyński J.: Photoelec-trochemical properties of nanostructured tungsten trioxide films, The J. of Phys. Chemistry B. 105, (2001), 936-940
- [34] Cole B., Marsen B., Miller E. L.: Evaluation of nitrogen doping of tungsten oxide for photoelectro-chemical water splitting. J. of Phys. Chemistry C., 112, (2008), 3078-3082
- [35] Solarska R., Królikowska A., Augustyński J.: Silver nanoparticles-induced photocurrent enhancement at WO3 photoanodes, Angewandte Chemie Int. Edition., 49, (2010),7980-7983
- [36] Miller E.L., Paluselli D., Marsen B., Rocheleau R.E.: Low-temperature sputtered iron oxide for thin film devices, Thin Solid Films, 466, 2004, 307-313
- [37] Duret A., Graetzel M.: Visible light-induced water oxidation on mesoscopic a-Fe2O3 films made by ultrasonic spray pyrolysis, J. of Physical Chemistry B, 109, (2005), 17184-17191
- [38] Yae S., Kobayashi T., Abe M.: Solar to chemical conversion using metal nanoparticle modified microcrys-talline silicon thin film photoelectrode, Solar Energy Materials and Solar Cells, 91, (2007), 224-229
- [39] Sebastian P.J., Mathews N.R., Mathews X.:_Photo-electrochemical characterization of SiC, International J. of Hydrogen Energy, 26, (2001), 123-125
- [40] Bar M., Weinhardt L., Pookpanratana S.: Depth-resolved band gap in Cu(In,Ga)(S,Se)2 thin films, Applied Physics Letters, 93, (2008), 244103-244103-3
- [41] Marsen B., Cole B., Miller E. I.: Photoelectrolysis of water using thin copper gallium diselenide electrodes. Solar Energy Materials & Solar Cells, 92, (2007), 1054-1058
- [42] Jaramillo T.F., Jorgensen K. P., Bonde J.: Science, 317, (2007), 100-102
- [43] Deutsch T.G., Koval C.A., Turner J. A.: Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts, J. of Physical Chemistry B, 110, (2006), 25297
- [44] Fujishhna A., Honda K.: Electrochemical photolysis of water at a semiconductor electrode, Nature, 238, (1972), 37-38
- [45] Mavroides J.G., Kafalas J.A., Kolesar D.F.: Photo-electrolysis of water in cells with SrTiO3 anodes, Applied Physics Letters, 28, (1976), 241-243
- [46] Ellis A.B., Kaiser S.W., Wrighton M.S.; Semiconducting potassium tantalate electrodes, Journal of Physical Chemistry, 80, (1976), 1325-1328
- [47] Somasundaram S., Chenthamarakshan C.R., Tacconi N.R., Basit N.A., Rajeshwar K.: Composite WO3-TiO2 films: Pulsed electrodeposition from a mixed bath versus sequential deposition from twin baths, Electrochem. Comm., 8, (2006), 539-543
- [48] Tahir A.A., Mazhar M., Hamid M., Wijayantha K. G., Molloy K.C.: Photooxidation of water by NiTiO3 deposited from single source precursor [Ni2Ti2(OEt)2(micro-OEt)6(acac)4] by AACVD, Dalton Trans., 21, (2009), 3674-3680
- [49] Murphy A. B., Barnes P. R. F., Randeniya L. K.: Efficiency of solar water splitting using semiconductor electrodes, Int. J. of Hydrogen Energy, 31, (2006), 1999-2017
- [50] Huda M.H., Van Y., Moon C.Y., Wei S.H., Al-Jassim M.M.: Density-functional theory study of the effects of atomic doping on the band edges of monoclinicWO3.,Phys. Rev. B, 77, (2008),195102-1-195102-13
- [51] Yan Y, Wei S. H.: Doping asymmetry in wide-band-gap semiconductors: Origins and solutions, Physica Status Solidi B Basic Research, 245, (2008), 641-652
- [52] Jaramilo T. F., Baeck S. H., Kleiman Sharsctein A. J.: Automated electrochemical synthesis and photoelec-trochemical characterization of Zn1-xCoxO thin films for solar hydrogen production, Journal of Combinatorial Chemistry, 7, (2005), 264-271
- [53] Woodhous M., Herman G., Parkinson B. A.: Combinatorial discovery and optimization of a complex oxide with water photoelectrolysis activity, Chemistry of Materials, 17, (2005), 4318-4324
- [54] Pawlak D. A., Turczyński S., Gajc M., Kołodziejak K., DiduszkoR., Rozniatowski K., Smalc J.,Vendik L: Metamaterials: How far are we from making metamaterials by self-organization? The microstructure of highly anisotropic particles with an SRR-like geometry. Advanced Functional Materials, 20, (2010), 1031-1195
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT5-0063-0002