PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Adaptive output feedback control of MIMO AUV with unknown gain matrix

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents a model reference adaptive control (MRAC) system for the dive plane control of a multi-input, multi-output (MIMO) autonomous underwater vehicle (AUV). The vehicle is equipped with a bow and a stern hydroplane for the purpose of control. It is assumed that the system parameters including the high-frequency gain matrix are unknown. Based on the Lyapunov stability theory, an adaptive output feedback control law is derived for the trajectory control of the depth and pitch angle. For the design of the control law, SDU decomposition of the high-frequency gain matrix is used, and only the measured output variables (the depth and pitch angle) are used for the synthesis of the controller. Simulation results are presented which show that in the closed-loop system, depth and pitch angle trajectory tracking is accomplished in spite of the presence of parameter uncertainties.
Czasopismo
Rocznik
Strony
5--10
Opis fizyczny
Bibliogr. 16 poz., wykr.
Twórcy
autor
Bibliografia
  • [1] Babaoglu O.K., Designing an automatic control system for a submarine, Masters Thesis, Naval Postgraduate School, Monterey, California, 1988.
  • [2] Dumlu D., Istefanopulos Y., Design of an adaptive controller for submersibles via multimodel gain scheduling, Ocean Engineering, Vol. 22, No. 6, 1995, pp. 593-614.
  • [3] Demirci U., Kerestecioglu F., A re-configuring sliding-mode controller with adjustable robustness, Ocean Engineering, Vol. 31, 2004, pp. 1669-1682.
  • [4] Fossen T.I., Guidance and Control of Ocean Vehicles, Wiley Publications, New York, 1994.
  • [5] Guo J., Chiu F., Huang C., Design of a sliding mode fuzzy controller for the guidance and control of an autonomous underwater vehicle, Ocean Engineering, Vol. 30, 2003, pp. 2137-2155.
  • [6] Healey A.J., Lienard D., Multi-variable sliding mode control for autonomous diving and steering of unmanned underwater vehicles, IEEE Journal of Oceanic Engineering, Vol. 18, No. 3, 1993, pp. 327-338.
  • [7] Naik M.S., Singh S.N., State-dependent Riccati equation-based robust dive plane control of AW with control constraints, Ocean Engineering, Vol. 34, 2007, pp. 1711-1723.
  • [8] Yoerger D.R., Slotine J.E., Robust trajectory control of underwater vehicles, IEEE Journal of Oceanic Engineering, Vol. 10, No. 4, 1985, pp. 462-470.
  • [9] Aguiar A.P., Hespanha J.P., Trajectory-tracking and path-following of underactuated autonomous vehicles with parametric modeling uncertainty, IEEE Transactions on Automatic Control, 52(8), 2007, pp. 1362-1379.
  • [10] Casado M., Ferreiro R., Identification of the nonlinear ship model parameters based on the tuning test trial and back-stepping, Ocean Engineering, 32, (11-12), 2005, pp. 1350-1369.
  • [11] Nambisan P.R., Singh S.N., Nonlinear robust output feedback control of submersibles via modeling error compensation, Systems Science, Vol. 33, No. 4, 2007, pp. 27-35.
  • [12] Nambisan P.R., Singh S.N., Multi-variable adaptive back-stepping control of submersibles using SDU decomposition, Ocean Engineering, Vol. 36, 2009, pp. 158-167.
  • [13] Morse A.S., A gain matrix decomposition and some of its applications, Systems and Control letters, Vol. 21(1), 1993, pp. 1-10.
  • [14] Tao G., Adaptive Control Design and Analysis, Wiley publications, New York, 2003.
  • [15] Imai A.K., Costa R.R., Hsu L., Tao G., Kokotovic P., Multi-variate adaptive control using high-frequency gain matrix factorization, IEEE transactions on Automatic Control, Vol. 52, No. 2, 2007, pp. 1152-1156.
  • [16] Narendra K.S., Annaswamy A.M., Stable Adaptive Systems, Prentice-Hall, Inc., N.J., 1989.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT5-0062-0001
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.