Tytuł artykułu
Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This study compares the performance of decision tree (CART) and two neural network configurations, namely a well-known Multilayer Perceptron Neural Network (MLP NN) and the Radial Basis Function Neural Network (RBF NN) on the radar ionosphere databases. The task is to discriminate between radar returns from the ionosphere into "good returns" (evidence of structure) and "bad returns". It is shown that the proposed RBF neural network based classifier, consistently, has 100% accuracy on "bad" instances and 99.18% accuracy on "good" instances of testing data sets. The results prove that the proposed RBF NN classifier clearly outperforms the MLP NN and Decision Tree based classifiers on the testing datasets even after attempting different data partitions.
Czasopismo
Rocznik
Tom
Strony
61--67
Opis fizyczny
Bibliogr. 19 poz., rys.
Twórcy
autor
autor
- Department of Electronics and Telecommunication, B.D. College of Engineering, 442102 Sevagram, India, salankar_ss@rediffmail.com
Bibliografia
- [1] Sigillito V.G., Wing S.P., Mutton L.V., Baker K.B., Classification of radar returns from the ionosphere using neural networks, Johns Hopkins APL Technical Digest, Vol. 10, 1989, pp. 262-266.
- [2] Wing S., Greenwald R.A., Meng C.-L, Sigillito V.G., Button L.V., Neural Networks for automated classification of ionospheric irregularities in HF radar backscattered signals, Radio Science, Vol. 38(4), 2003, pp. 2-1.
- [3] Me Conaghy T., Leung H., Bosse E., Varadan V., Classification of audio radar signals using radial basis function neural networks, IEEE Transactions on Instrumentation and Measurements, Vol. 52, issue 6, December 2003, pp. 1771-1779.
- [4] Rermm J.F., Alexandra F., Knowledge extraction using artificial neural networks: application to radar target identification, Inetrnational Journal on Signal Processing, Elsevier North-Holland Inc., ISSN 0165-1684, Vol. 82, issue 1, January 2002, pp. 117-120.
- [5] Bennett K.P., Blue J., A Support Vector Machine Approach to Decision Trees, R.P.I. Math Report No. 97-100, Rensselaer Polytechnic Institute, Troy, 1997.
- [6] Sigillito V., (vgs@aplcen.apl.jhu.edu), Applied Physics Laboratory, Johns Hopkins University, Johns Hopkins Road, Laurel, MD 20723, John Hopkins University Ionosphere database, 1989.
- [7] Lippmann R.P., An introduction to computing with neural nets, IEEE ASSP Magazine, April 1987, pp. 4-22.
- [8] Duda R.O., Hart P.E., Stork D.G., Pattern Classification, 2nd edition, John Wiley, New York, 2001,
- [9] Haykin S., Neural Networks: A Comprehensive Foundation, McMillan, New York, 1994.
- [10] Powell M.J.D., Radial basis functions for multivariable interpolation: A review, IMA Conference on Algorithms for the Approximation of Functions and Data, RMCS, Shriven-ham, England, 1985, pp. 143-167.
- [11] Murthy S.K., Kasif S., Salzberg S., A system for induction of oblique decision trees, Journal of Artificial Intelligence Research, 2, 1994, pp. 1-32.
- [12] Kononenko I., Hong J.S., Attribute selection for modeling, Future Generation Computer Systems, 13, 1997, pp. 181-195.
- [13] Mingers J., An empirical comparison of selection measures for decision tree induction, Machine Learning, 3, 1989, pp. 319-342.
- [14] Quinlan J.R., C4.5: Programs for Machine Learning, San Mateo: Morgan Kaufmann, San Francisco, 1993.
- [15] Morgan J.N., Sonquist J.A., Problems in the analysis of survey data and a proposal, Journal of American Statistical Association, 58, 1963, pp. 415-434.
- [16] Kass G.V., An exploratory technique for investigating large quantities of categorical data, Applied Statistics, 20(2), 1980, pp. 119-127.
- [17] Bigss D., Ville B., Suen E., A method of choosing multiway partitions for classification and decision trees, Journal of Applied Statistics, 18(1), 1991, pp. 49-62.
- [18] Breiman L., Friedman J.H., Olshen R.A., Stone C.J., Classification and Regression Trees, Wadsworth, Monterey, California, 1984.
- [19] Loh W.Y., Shih Y.S., Split selection methods for classification trees, Statistica Sinica, 7, 1997, pp. 815-840.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT5-0058-0032