Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The paper presents a method of determining the Lyapunov functional for linear time-invariant LTI system with two lumped delays.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
797--809
Opis fizyczny
Bibliogr. 20 poz., wykr.
Twórcy
autor
- Institute of Automatic Control, AGH University of Science and Technology, jduda@agh.edu.pl
Bibliografia
- DUDA, J. (1986) Parametric optimization problem for systems with time delay. PhD thesis, AGH University of Science and Technology, Cracow, Poland.
- DUDA, J. (1988) Parametric optimization of neutral linear system with respect to the general quadratic performance index. Archiwum Automatyki i Telemechaniki, 33 (3), 448-456.
- FRIDMAN, E. (2001) New Lyapunov-Krasovskii functionals for stability of linear retarded and neutral type systems. Systems & Control Letters, 43, 309-319.
- GÓRECKI, H., FUKSA, S., GRABOWSKI, P., KORYTOWSKI, A. (1989) Analysis and Synthesis of Time Delay Systems. John Wiley & Sons, Chichester-New York-Brisbane-Toronto-Singapore.
- GU, K. (1997) Discretized LMI set in the Stability Problem of Linear Time Delay Systems. International Journal of Control, 68, 923-934.
- GU, K., LIU, Y. (2009) Lyapunov-Krasovskii functional for uniform stability of coupled differential-functional equations. Automatica, 45, 798-804.
- HAN, Q.L. (2004a) On robust stability of neutral systems with time-varying discrete delay and norm-bounded uncertainty. Automatica, 40,1087-1092.
- HAN, Q.L. (2004b) A descriptor system approach to robust stability of uncertain neutral systems with discrete and distributed delays. Automatica, 40, 1791-1796.
- HAN, Q.L. (2005) On stability of linear neutral systems with mixed time delays: A discretised Lyapunov functional approach. Automatica, 41, 1209-1218.
- HAN, Q.L. (2009) A discrete delay decomposition approach to stability of linear retarded and neutral systems. Automatica, 45, 517-524.
- INFANTE, E.F., CASTELAN, W.B. (1978) A Liapunov Functional For a Matrix Difference-Differential Equation. J. Differential Equations, 29, 439-451.
- IVANESCU, D., NICULESCU, S.I., DUGARD, L., DION, J.M., VERRIEST, E. (2003) On delay-dependent stability for linear neutral systems. Automatica, 39, 255-261.
- KHARITONOV, V.L. (2005) Lyapunov functionals and Lyapunov matrices for neutral type time delay systems: a single delay case. International Journal of Control, 78 (11), 783-800.
- KHARITONOV, V.L. (2008) Lyapunov matrices for a class of neutral type time delay systems. International Journal of Control, 81 (6), 883-893.
- KHARITONOV, V.L., HINRICHSEN, D. (2004) Exponential estimates for time delay systems. Systems & Control Letters, 53, 395-405.
- KHARITONOV, V.L., PLISCHKE, E. (2006) Lyapunov matrices for time-delay systems. Systems & Control Letters, 55, 697-706.
- KHARITONOV, V.L., ZHABKO, A.P. (2003) Lyapunov-Krasovskii approach to the robust stability analysis of time-delay systems. Automatica, 39, 15-20.
- KLAMKA, J. (1991) Controllability of Dynamical Systems. Kluwer Academic Publishers, Dordrecht.
- REPIN, Yu.M. (1965) Quadratic Lyapunov functionals for systems with delay. Prikl. Mat. Mekh., 29, 564-566.
- RICHARD, J.P. (2003) Time-delay systems: an overview of some recent advances and open problems. Automatica, 39, 1667-1694.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT5-0055-0029