Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Let ƒ be a conditionally symmetric martingale and let S(ƒ) denote its square function. (i) For p, q > 0, we determine the best constants Cp,q such that [wzór...]. Furthermore, the inequality extends to the case of Hilbert space valued ƒ. (ii) For N = 1,2,... and q > 0, we determine the best constants C'N,q such that [wzór...]. These bounds are extended to sums of conditionally symmetric variables which are not necessarily integrable. In addition, we show that neither of the inequalities above holds if the conditional symmetry is not assumed.
Słowa kluczowe
Wydawca
Rocznik
Tom
Strony
65--77
Opis fizyczny
Bibliogr. 18 poz.
Twórcy
autor
- Department of Mathematics, Informatics and Mechanics, University of Warsaw, Banacha 2 02-097 Warszawa, Poland, ados@mimuw.edu.pl
Bibliografia
- [Ab] M. Abramowitz and I. A. Stegun (eds.), Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables, Reprint of the 1972 edition, Dover Publ., New York, 1992.
- [BT] B. Bercu and A. Touai, Exponential inequalities for self-normalized martingales with applications, Ann. Appl. Probab. 18 (2008), 1848-1869.
- [Bu] D. L. Burkholder, Explorations in martingale theory and its applications, in: École d’Été de Probabilités de Saint-Flour XIX-1989, Lecture Notes in Math. 1464, Springer, Berlin, 1991, 1-66.
- [D] B. Davis, On the Lp norms of stochastic integrals and other martingales, Duke Math. J. 43 (1976), 697-704.
- [D1] V. H. De La Pena, A general class of exponential inequalities for martingales and ratios, Ann. Probab. 27 (1999), 537-564.
- [D2] V. H. De La Pena, M. J. Klass and T. L. Lai, Self-normalized processes: Exponential inequalities, moment bounds and iterated logarithm law, Ann. Probab 32 (2004), 1902-1933.
- [DM] C. Dellacherie and P. A. Meyer, Probabilities and Potential B, North-Holland, Amsterdam, 1982.
- [K] A. Khintchine [A. Ya. Khinchin], Über dyadische Brüche, Math. Z. 18 (1923), 109-116.
- [L] J. E. Littlewood, On bounded bilinear forms in an infinite number of variables, Quart. J. Math. Oxford 1 (1930), 164-174.
- [M] J. Marcinkiewicz, Quelques théorèmes sur les séries orthogonales, Ann. Soc. Polon. Math. 16 (1937), 84-96.
- [MZ] J. Marcinkiewicz et A. Zygmund, Quelques théorèmes sur les fonctions indépendantes, Studia Math. 7 (1938), 104-120.
- [O] A. Osękowski, Two inequalities for the first moment of a martingale, its square and maximal function, Bull. Polish Acad. Sci. Math. 53 (2005), 441-449.
- [P] R. E. A. C. Paley, A remarkable series of orthogonal functions I, Proc. London Math. Soc. 34 (1932), 241-264.
- [PP] J. L. Pedersen and G. Peskir, Solving non-linear optimal stopping problems by the method of time-change, Stochastic Anal. Appl. 18 (2000), 811-835.
- [PX] G. Pisier and Q. Xu, Non-commutative martingale inequalities, Comm. Math. Phys. 189 (1997), 667-698.
- [S1] E. M. Stein, The development of square functions in the work of A. Zygmund, Bull. Amer. Math. Soc. 7 (1982), 359-376.
- [S2] E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Univ. Press, Princeton, NJ, 1993.
- [W] G. Wang, Sharp square-function inequalities for conditionally symmetric martingales, Trans. Amer. Math. Soc. 328 (1991), 393-419.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT5-0049-0008
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.