PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A discretized approach to W. T. Gowers' game

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We give an alternative proof of W. T. Gowers' theorem on block bases by reducing it to a discrete analogue on specific countable nets. We also give a Ramsey type result on k-tuples of block sequences in a normed linear space with a Schauder basis.
Słowa kluczowe
Rocznik
Strony
1--16
Opis fizyczny
Bibliogr. 24 poz.
Twórcy
autor
  • Department of Mathematics, Faculty of Applied Sciences, National Technical University of Athens, Zografou Campus 157 80, Athens, Greece, bkanel@math.ntua.gr
Bibliografia
  • [1] G. Androulakis, S. J. Dilworth, and N. J. Kalton, A new approach to the Ramsey-type games and the Gowers dichotomy in F-spaces, Combinatorica, to appear.
  • [2] S. A. Argyros and S. Todorčevič, Ramsey Methods in Analysis, Adv. Courses Math., CRM Barcelona, Birkhäuser, Basel, 2005.
  • [3] J. Bagaria and J. Lopez-Abad, Weakly Ramsey sets in Banach spaces, Adv. Math. 160 (2001), 133-174.
  • [4] J. Bagaria and J. Lopez-Abad, Determinacy and weakly Ramsey sets in Banach spaces, Trans. Amer. Math. Soc. 354 (2002), 1327-1349.
  • [5] E. Ellentuck, A new proof that analytic sets are Ramsey, J. Symbolic Logic 39 (1974), 163-165.
  • [6] V. Ferenczi and C. Rosendal, Banach spaces without minimal subspaces, J. Funct. Anal. 257 (2009), 149-193.
  • [7] T. Figiel, R. Frankiewicz, R. Komorowski and C. Ryll-Nardzewski, On hereditarily indecomposable Banach spaces, Ann. Pure Appl. Logic 126 (2004), 293-299.
  • [8] T. Figiel, R. Frankiewicz, R. Komorowski and C. Ryll-Nardzewski, Selecting basic sequences in φ-stable Banach spaces, Studia Math. 159 (2003), 499-515.
  • [9] F. Galvin and K. Prikry, Borel sets and Ramsey’s theorem, J. Symbolic Logic 38 (1973), 193-198.
  • [10] W. T. Gowers, A new dichotomy for Banach spaces, Geom. Funct. Anal. 6 (1996), 1083-1093.
  • [11] W. T. Gowers, An infinite Ramsey theorem and some Banach-space dichotomies, Ann. of Math. 156 (2002), 797-833.
  • [12] W. T. Gowers, Ramsey methods in Banach spaces, in: Handbook of the Geometry of Banach Spaces, Vol. 2, Elsevier, 2003, 1072-1097.
  • [13] A. S. Kechris, Classical Descriptive Set Theory, Springer, 1995.
  • [14] J. Lopez-Abad, Coding into Ramsey sets, Math. Ann. 332 (2005), 775-794.
  • [15] B. Maurey, A note on Cowers’ dichotomy theorem, in: Convex Geometric Analysis, Math. Sci. Res. Inst. Publ. 34, Cambridge Univ. Press, Cambridge, 1999, 149-157.
  • [16] K. Milliken, Ramsey’s theorem with sums and unions, J. Combin. Theory Ser. A 18 (1975), 276-290.
  • [17] C. St. J. A. Nash-Williams, On well-quasi-ordering transfinite sequences, Proc. Cambridge Philos. Soc. 61 (1965), 33-39.
  • [18] A. M. Pelczar, Some version of Gowers’ dichotomy for Banach spaces, Univ. lagel. Acta Math. 41 (2003), 235-243.
  • [19] A. M. Pelczar, Subsymmetric sequences and minimal spaces, Proc. Amer. Math. Soc. 131 (2003), 765-771.
  • [20] P. Pudlák and V. Rödl, Partition theorems for systems of finite subsets of integers, Discrete Math. 39 (1982), 67-73.
  • [21] C. Rosendal, An exact Ramsey principle for block sequences, Collect. Math. 61 (2010), 25-36.
  • [22] C. Rosendal, Infinite asymptotic games, Ann. Inst. Fourier (Grenoble) 59 (2009), 1323-1348.
  • [23] J. Silver, Every analytic set is Ramsey, J. Symbolic Logic 35 (1970), 60-64.
  • [24] A. Tcaciuc, On the existence of asymptotic-lp structures in Banach spaces, Canad. Math. Bull. 50 (2007), 619-631.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT5-0049-0001
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.